Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder

Abstract:

INTRODUCTION: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a medical illness characterized by disorders in inflammatory and oxidative and nitrosative (IO&NS) pathways.

METHODS: This paper examines the role of Coenzyme Q10 (CoQ10), a mitochondrial nutrient which acts as an essential cofactor for the production of ATP in mitochondria and which displays significant antioxidant activities. Plasma CoQ10 has been assayed in 58 patients with ME/CFS and in 22 normal controls; the relationships between CoQ10 and the severity of ME/CFS as measured by means of the FibroFatigue (FF) scale were measured.

RESULTS: Plasma CoQ10 was significantly (p=0.00001) lower in ME/CFS patients than in normal controls. Up to 44.8% of patients with ME/CFS had values beneath the lowest plasma CoQ10 value detected in the normal controls, i.e. 490 microg/L. In ME/CFS, there were significant and inverse relationships between CoQ10 and the total score on the FF scale, fatigue and autonomic symptoms. Patients with very low CoQ10 (<390 microg/L) suffered significantly more from concentration and memory disturbances.

DISCUSSION: The results show that lowered levels of CoQ10 play a role in the pathophysiology of ME/CFS and that symptoms, such as fatigue, and autonomic and neurocognitive symptoms may be caused by CoQ10 depletion. Our results suggest that patients with ME/CFS would benefit from CoQ10 supplementation in order to normalize the low CoQ10 syndrome and the IO&NS disorders. The findings that lower CoQ10 is an independent predictor of chronic heart failure (CHF) and mortality due to CHF may explain previous reports that the mean age of ME/CFS patients dying from CHF is 25 years younger than the age of those dying from CHF in the general population. Since statins significantly decrease plasma CoQ10, ME/CFS should be regarded as a relative contraindication for treatment with statins without CoQ10 supplementation.

 

Source: Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol Lett. 2009;30(4):470-6. https://www.ncbi.nlm.nih.gov/pubmed/20010505

 

Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness

Abstract:

INTRODUCTION: There is now evidence that major depression is accompanied by an induction of inflammatory and oxidative and nitrosative stress (IO&NS) pathways and by a lowered antioxidant status. Coenzyme Q10 (CoQ10) is a strong antioxidant that has anti-inflammatory effects.

METHODS: This paper examines the plasma concentrations of CoQ10 in 35 depressed patients and 22 normal volunteers and the relationships between plasma CoQ10 and treatment resistant depression (TRD), the severity of illness as measured by means of the Hamilton Depression Rating Scale (HDRS) and the presence of chronic fatigue syndrome (CFS).

RESULTS: We found that plasma CoQ10 was significantly (p=0.0002) lower in depressed patients than in normal controls. 51.4% of the depressed patients had plasma CoQ10 values that were lower than the lowest plasma CoQ10 value detected in the controls. Plasma CoQ10 was significantly lower in patients with TRD and with CFS than in the other depressed patients. There were no significant correlations between plasma CoQ10 and the HDRS.

DISCUSSION: The results show that lower CoQ10 plays a role in the pathophysiology of depression and in particular in TRD and CFS accompanying depression. It is suggested that depressed patients may benefit from CoQ10 supplementation. The findings that lower CoQ10 is a risk factor to coronary artery disease and chronic heart failure (CHF) and mortality due to CHF suggest that low CoQ10 is another factor explaining the risk to cardiovascular disorder in depression. Since statins significantly lower plasma CoQ10, depressed patients and in particular those with TRD and CFS represent populations at risk to statin treatment.

 

Source: Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro Endocrinol Lett. 2009;30(4):462-9. https://www.ncbi.nlm.nih.gov/pubmed/20010493

 

Prospective observational study of treatments for unexplained chronic fatigue

Abstract:

BACKGROUND: Unexplained chronic fatigue is a frequent complaint in primary care. A prospective observational study design was used to evaluate whether certain commonly used therapies for unexplained chronic fatigue may be effective.

METHOD: Subjects with unexplained chronic fatigue of unknown etiology for at least 6 months were recruited from the Wisconsin Chronic Fatigue Syndrome Association, primary care clinics, and community chronic fatigue syndrome presentations. The primary outcome measure was change in a 5-question fatigue score from 6 months to 2 years. Self-reported interventions tested included prescribed medications, non-prescribed supplements and herbs, lifestyle changes, alternative therapies, and psychological support. Linear regression analysis was used to test the association of each therapy with the outcome measure after adjusting for statistically significant prognostic factors.

RESULTS: 155 subjects provided information on fatigue and treatments at baseline and follow-up. Of these subjects, 87% were female and 79% were middle-aged. The median duration of fatigue was 6.7 years. The percentage of users who found a treatment helpful was greatest for coenzyme Q10 (69% of 13 subjects), dehydroepiandrosterone (DHEA) (65% of 17 subjects), and ginseng (56% of 18 subjects). Treatments at 6 months that predicted subsequent fatigue improvement were vitamins (p = .08), vigorous exercise (p = .09), and yoga (p = .002). Magnesium (p = .002) and support groups (p = .06) were strongly associated with fatigue worsening from 6 months to 2 years. Yoga appeared to be most effective for subjects who did not have unclear thinking associated with the fatigue.

CONCLUSION: Certain alternative therapies for unexplained chronic fatigue, especially yoga, deserve testing in randomized controlled trials.

 

Source: Bentler SE, Hartz AJ, Kuhn EM. Prospective observational study of treatments for unexplained chronic fatigue. J Clin Psychiatry. 2005 May;66(5):625-32. http://www.ncbi.nlm.nih.gov/pubmed/15889950

 

Nutritional strategies for treating chronic fatigue syndrome

Abstract:

Despite considerable worldwide efforts, no single etiology has been identified to explain the development of chronic fatigue syndrome (CFS). It is likely that multiple factors promote its development, sometimes with the same factors both causing and being caused by the syndrome.

A detailed review of the literature suggests a number of marginal nutritional deficiencies may have etiologic relevance. These include deficiencies of various B vitamins, vitamin C, magnesium, sodium, zinc, L-tryptophan, L-carnitine, coenzyme Q10, and essential fatty acids. Any of these nutrients could be marginally deficient in CFS patients, a finding that appears to be primarily due to the illness process rather than to inadequate diets. It is likely that marginal deficiencies not only contribute to the clinical manifestations of the syndrome, but also are detrimental to the healing processes.

Therefore, when feasible, objective testing should identify them and their resolution should be assured by repeat testing following initiation of treatment. Moreover, because of the rarity of serious adverse reactions, the difficulty in ruling out marginal deficiencies, and because some of the therapeutic benefits of nutritional supplements appear to be due to pharmacologic effects, it seems rational to consider supplementing CFS patients with the nutrients discussed above, along with a general high-potency vitamin/mineral supplement, at least for a trial period.

Comment in: Nutritional strategies for treating chronic fatigue syndrome. [Altern Med Rev. 2001]

 

Source: Werbach MR. Nutritional strategies for treating chronic fatigue syndrome. Altern Med Rev. 2000 Apr;5(2):93-108. http://www.altmedrev.com/publications/5/2/93.pdf (Full article)

 

Isolated diastolic dysfunction of the myocardium and its response to CoQ10 treatment

Abstract:

Symptoms of fatigue and activity impairment, atypical precordial pain, and cardiac arrhythmia frequently precede by years the development of congestive heart failure.

Of 115 patients with these symptoms, 60 were diagnosed as having hypertensive cardiovascular disease, 27 mitral valve prolapse syndrome, and 28 chronic fatigue syndrome. These symptoms are common with diastolic dysfunction, and diastolic function is energy dependent. All patients had blood pressure, clinical status, coenzyme Q10 (CoQ10) blood levels and echocardiographic measurement of diastolic function, systolic function, and myocardial thickness recorded before and after CoQ10 replacement.

At control, 63 patients were functional class III and 54 class II; all showed diastolic dysfunction; the mean CoQ10 blood level was 0.855 micrograms/ml; 65%, 15%, and 7% showed significant myocardial hypertrophy, and 87%, 30%, and 11% had elevated blood pressure readings in hypertensive disease, mitral valve prolapse and chronic fatigue syndrome respectively. Except for higher blood pressure levels and more myocardial thickening in the hypertensive patients, there was little difference between the three groups.

CoQ10 administration resulted in improvement in all; reduction in high blood pressure in 80%, and improvement in diastolic function in all patients with follow-up echocardiograms to date; a reduction in myocardial thickness in 53% of hypertensives and 36% of the combined prolapse and fatigue syndrome groups; and a reduced fractional shortening in those high at control and an increase in those initially low.(ABSTRACT TRUNCATED AT 250 WORDS)

 

Source: Langsjoen PH, Langsjoen PH, Folkers K. Isolated diastolic dysfunction of the myocardium and its response to CoQ10 treatment. Clin Investig. 1993;71(8 Suppl):S140-4. http://www.ncbi.nlm.nih.gov/pubmed/8241699