The Role of Autonomic Function in Exercise-induced Endogenous Analgesia: A Case-control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Healthy People

Abstract:

BACKGROUND: Patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are unable to activate brain-orchestrated endogenous analgesia (or descending inhibition) in response to exercise. This physiological impairment is currently regarded as one factor explaining post-exertional malaise in these patients. Autonomic dysfunction is also a feature of ME/CFS.

OBJECTIVES: This study aims to examine the role of the autonomic nervous system in exercise-induced analgesia in healthy people and those with ME/CFS, by studying the recovery of autonomic parameters following aerobic exercise and the relation to changes in self-reported pain intensity.

STUDY DESIGN: A controlled experimental study.

SETTING: The study was conducted at the Human Physiology lab of a University.

METHODS: Twenty women with ME/CFS- and 20 healthy, sedentary controls performed a submaximal bicycle exercise test known as the Aerobic Power Index with continuous cardiorespiratory monitoring. Before and after the exercise, measures of autonomic function (i.e., heart rate variability, blood pressure, and respiration rate) were performed continuously for 10 minutes and self-reported pain levels were registered. The relation between autonomous parameters and self-reported pain parameters was examined using correlation analysis.

RESULTS: Some relationships of moderate strength between autonomic and pain measures were found. The change (post-exercise minus pre-exercise score) in pain severity was correlated (r = .580, P = .007) with the change in diastolic blood pressure in the healthy group. In the ME/CFS group, positive correlations between the changes in pain severity and low frequency (r = .552, P = .014), and between the changes in bodily pain and diastolic blood pressure (r = .472, P = .036), were seen. In addition, in ME/CHFS the change in headache severity was inversely correlated (r = -.480, P = .038) with the change in high frequency heart rate variability.

LIMITATIONS: Based on the cross-sectional design of the study, no firm conclusions can be drawn on the causality of the relations.

CONCLUSIONS: Reduced parasympathetic reactivation during recovery from exercise is associated with the dysfunctional exercise-induced analgesia in ME/CFS. Poor recovery of diastolic blood pressure in response to exercise, with blood pressure remaining elevated, is associated with reductions of pain following exercise in ME/CFS, suggesting a role for the arterial baroreceptors in explaining dysfunctional exercise-induced analgesia in ME/CFS patients.

 

Source: Oosterwijck JV, Marusic U, De Wandele I, Paul L, Meeus M, Moorkens G, Lambrecht L, Danneels L, Nijs J. The Role of Autonomic Function in Exercise-induced Endogenous Analgesia: A Case-control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Healthy People. Pain Physician. 2017 Mar;20(3):E389-E399. https://www.ncbi.nlm.nih.gov/pubmed/28339438

 

Impaired cardiac function in chronic fatigue syndrome measured using magnetic resonance cardiac tagging

Abstract:

OBJECTIVES: Impaired cardiac function has been confirmed in patients with chronic fatigue syndrome (CFS). Magnetic resonance cardiac tagging is a novel technique that assesses myocardial wall function in vivo. We hypothesized that patients with CFS may have impaired development and release of myocardial torsion and strain.

METHODS: Cardiac morphology and function were assessed using magnetic resonance imaging and cardiac tagging methodology in 12 CFS patients (Fukuda) and 10 matched controls.

RESULTS: Compared to controls, the CFS group had substantially reduced left ventricular mass (reduced by 23%), end-diastolic volume (30%), stroke volume (29%) and cardiac output (25%). Residual torsion at 150% of the end-systolic time was found to be significantly higher in the patients with CFS (5.3 ± 1.6°) compared to the control group (1.7 ± 0.7°, P = 0.0001). End-diastolic volume index correlated negatively with both torsion-to-endocardial-strain ratio (TSR) (r = -0.65, P = 0.02) and the residual torsion at 150% end-systolic time (r = -0.76, P = 0.004), so decreased end-diastolic volume is associated with raised TSR and torsion persisting longer into diastole. Reduced end-diastolic volume index also correlated significantly with increased radial thickening (r = -0.65, P = 0.03) and impaired diastolic function represented by the ratio of early to late ventricular filling velocity (E/A ratio, r = 0.71, P = 0.009) and early filling percentage (r = 0.73, P = 0.008).

CONCLUSION: Patients with CFS have markedly reduced cardiac mass and blood pool volumes, particularly end-diastolic volume: this results in significant impairments in stroke volume and cardiac output compared to controls. The CFS group appeared to have a delay in the release of torsion.

© 2011 The Association for the Publication of the Journal of Internal Medicine.

 

Source: Hollingsworth KG, Hodgson T, Macgowan GA, Blamire AM, Newton JL. Impaired cardiac function in chronic fatigue syndrome measured using magnetic resonance cardiac tagging. J Intern Med. 2012 Mar;271(3):264-70. doi: 10.1111/j.1365-2796.2011.02429.x. Epub 2011 Aug 15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627316/ (Full article)

 

Chronic fatigue syndrome: comments on deconditioning, blood volume and resulting cardiac function

Abstract:

Cardiovascular and autonomic dysfunction have been suggested to underlie the symptoms accompanying CFS (chronic fatigue syndrome). In the present issue of Clinical Science, Hurwitz and co-workers have investigated whether deficits were present in cardiac output and blood volume in a cohort of patients with CFS and if these were linked to illness severity and sedentary lifestyle. The results clearly demonstrate reduced cardiac stroke volume and cardiac output in more severely afflicted patients with CFS, which is primarily attributable to a measurable reduction in blood volume. Similar findings are observed in microgravity and bed rest deconditioning, in forms of orthostatic intolerance and, to a lesser extent, in sedentary people. The circulatory consequences of reduced cardiac output may help to account for many of the findings of the syndrome.

You can read the rest of this comment herehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236909/

 

Source: Stewart JM. Chronic fatigue syndrome: comments on deconditioning, blood volume and resulting cardiac function. Clin Sci (Lond). 2009 Oct 19;118(2):121-3. doi: 10.1042/CS20090327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236909/ (Full article)

 

Isolated diastolic dysfunction of the myocardium and its response to CoQ10 treatment

Abstract:

Symptoms of fatigue and activity impairment, atypical precordial pain, and cardiac arrhythmia frequently precede by years the development of congestive heart failure.

Of 115 patients with these symptoms, 60 were diagnosed as having hypertensive cardiovascular disease, 27 mitral valve prolapse syndrome, and 28 chronic fatigue syndrome. These symptoms are common with diastolic dysfunction, and diastolic function is energy dependent. All patients had blood pressure, clinical status, coenzyme Q10 (CoQ10) blood levels and echocardiographic measurement of diastolic function, systolic function, and myocardial thickness recorded before and after CoQ10 replacement.

At control, 63 patients were functional class III and 54 class II; all showed diastolic dysfunction; the mean CoQ10 blood level was 0.855 micrograms/ml; 65%, 15%, and 7% showed significant myocardial hypertrophy, and 87%, 30%, and 11% had elevated blood pressure readings in hypertensive disease, mitral valve prolapse and chronic fatigue syndrome respectively. Except for higher blood pressure levels and more myocardial thickening in the hypertensive patients, there was little difference between the three groups.

CoQ10 administration resulted in improvement in all; reduction in high blood pressure in 80%, and improvement in diastolic function in all patients with follow-up echocardiograms to date; a reduction in myocardial thickness in 53% of hypertensives and 36% of the combined prolapse and fatigue syndrome groups; and a reduced fractional shortening in those high at control and an increase in those initially low.(ABSTRACT TRUNCATED AT 250 WORDS)

 

Source: Langsjoen PH, Langsjoen PH, Folkers K. Isolated diastolic dysfunction of the myocardium and its response to CoQ10 treatment. Clin Investig. 1993;71(8 Suppl):S140-4. http://www.ncbi.nlm.nih.gov/pubmed/8241699