Plasmapheresis to remove amyloid fibrin(ogen) particles for treating the post‐COVID‐19 condition

Abstract:

Background: The post-COVID-19 condition (PCC) consists of a wide array of symptoms including fatigue and impaired daily living. People seek a wide variety of approaches to help them recover. A new belief, arising from a few laboratory studies, is that ‘microclots’ cause the symptoms of PCC. This belief has been extended outside these studies, suggesting that to recover people need plasmapheresis (an expensive process where blood is filtered outside the body). We appraised the laboratory studies, and it was clear that the term ‘microclots’ is incorrect to describe the phenomenon being described. The particles are amyloid and include fibrin(ogen); amyloid is not a part of a thrombus which is a mix of fibrin mesh and platelets. Initial acute COVID-19 infection is associated with clotting abnormalities; this review concerns amyloid fibrin(ogen) particles in PCC only. We have reported here our appraisal of laboratory studies investigating the presence of amyloid fibrin(ogen) particles in PCC, and of evidence that plasmapheresis may be an effective therapy to remove amyloid fibrin(ogen) particles for treating PCC.

Objectives: Laboratory studies review To summarize and appraise the research reports on amyloid fibrin(ogen) particles related to PCC. Randomized controlled trials review To assess the evidence of the safety and efficacy of plasmapheresis to remove amyloid fibrin(ogen) particles in individuals with PCC from randomized controlled trials.

Search methods: Laboratory studies review We searched for all relevant laboratory studies up to 27 October 2022 using a comprehensive search strategy which included the search terms ‘COVID’, ‘amyloid’, ‘fibrin’, ‘fibrinogen’. Randomized controlled trials review We searched the following databases on 21 October 2022: Cochrane COVID-19 Study Register; MEDLINE (Ovid); Embase (Ovid); and BIOSIS Previews (Web of Science). We also searched the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov for trials in progress.

Selection criteria: Laboratory studies review Laboratory studies that investigate the presence of amyloid fibrin(ogen) particles in plasma samples from patients with PCC were eligible. This included studies with or without controls. Randomized controlled trials review Studies were eligible if they were of randomized controlled design and investigated the effectiveness or safety of plasmapheresis for removing amyloid fibrin(ogen) particles for treating PCC.

Data collection and analysis: Two review authors applied study inclusion criteria to identify eligible studies and extracted data. Laboratory studies review We assessed the risk of bias of included studies using pre-developed methods for laboratory studies. We planned to perform synthesis without meta-analysis (SWiM) as described in our protocol. Randomized controlled trials review We planned that if we identified any eligible studies, we would assess risk of bias and report results with 95% confidence intervals. The primary outcome was recovery, measured using the Post-COVID-19 Functional Status Scale (absence of symptoms related to the illness, ability to do usual daily activities, and a return to a previous state of health and mind).

Main results: Laboratory studies review We identified five laboratory studies. Amyloid fibrin(ogen) particles were identified in participants across all studies, including those with PCC, healthy individuals, and those with diabetes. The results of three studies were based on visual images of amyloid fibrin(ogen) particles, which did not quantify the amount or size of the particles identified. Formal risk of bias assessment showed concerns in how the studies were conducted and reported. This means the results were insufficient to support the belief that amyloid fibrin(ogen) particles are associated with PCC, or to determine whether there is a difference in the amount or size of amyloid fibrin(ogen) particles in the plasma of people with PCC compared to healthy controls. Randomized controlled trials review We identified no trials meeting our inclusion criteria.

Authors’ conclusions: In the absence of reliable research showing that amyloid fibrin(ogen) particles contribute to the pathophysiology of PCC, there is no rationale for plasmapheresis to remove amyloid fibrin(ogen) particles in PCC. Plasmapheresis for this indication should not be used outside the context of a well-conducted randomized controlled trial.

Source: Fox T, Hunt BJ, Ariens RA, Towers GJ, Lever R, Garner P, Kuehn R. Plasmapheresis to remove amyloid fibrin(ogen) particles for treating the post-COVID-19 condition. Cochrane Database Syst Rev. 2023 Jul 26;7(7):CD015775. doi: 10.1002/14651858.CD015775. PMID: 37491597; PMCID: PMC10368521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368521/ (Full text)

Graded Exercise Therapy Doesn’t Restore the Ability to Work in ME/CFS. Rethinking of a Cochrane Review

Abstract:

Background: Cochrane recently amended its exercise review for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in response to an official complaint.

Objective: To determine if the amended review has addressed the concerns raised about the previous review and if exercise is an effective treatment that restores the ability to work in ME/CFS.

Method: The authors reviewed the amended Cochrane exercise review and the eight trials in it by paying particular interest to the objective outcomes. We also summarised the recently published review of work rehabilitation and medical retirement for ME/CFS.

Results: The Cochrane review concluded that graded exercise therapy (GET) improves fatigue at the end of treatment compared to no-treatment. However, the review did not consider the unreliability of subjective outcomes in non-blinded trials, the objective outcomes which showed that GET is not effective, or the serious flaws of the studies included in the review. These flaws included badly matched control groups, relying on an unreliable fatigue instrument as primary outcome, outcome switching, p-hacking, ignoring evidence of harms, etc. The review did also not take into account that GET does not restore the ability to work.

Conclusion: GET not only fails to objectively improve function significantly or to restore the ability to work, but it’s also detrimental to the health of≥50% of patients, according to a multitude of patient surveys. Consequently, it should not be recommended.

Source: Vink M, Vink-Niese F. Graded exercise therapy doesn’t restore the ability to work in ME/CFS. Rethinking of a Cochrane review [published online ahead of print, 2020 Jun 14]. Work. 2020;10.3233/WOR-203174. doi:10.3233/WOR-203174 https://pubmed.ncbi.nlm.nih.gov/32568149/

Exercise therapy for chronic fatigue syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME) is a serious disorder characterised by persistent postexertional fatigue and substantial symptoms related to cognitive, immune and autonomous dysfunction. There is no specific diagnostic test, therefore diagnostic criteria are used to diagnose CFS. The prevalence of CFS varies by type of diagnostic criteria used. Existing treatment strategies primarily aim to relieve symptoms and improve function. One treatment option is exercise therapy.

OBJECTIVES: The objective of this review was to determine the effects of exercise therapy for adults with CFS compared with any other intervention or control on fatigue, adverse outcomes, pain, physical functioning, quality of life, mood disorders, sleep, self-perceived changes in overall health, health service resources use and dropout.

SEARCH METHODS: We searched the Cochrane Common Mental Disorders Group controlled trials register, CENTRAL, and SPORTDiscus up to May 2014, using a comprehensive list of free-text terms for CFS and exercise. We located unpublished and ongoing studies through the World Health Organization International Clinical Trials Registry Platform up to May 2014. We screened reference lists of retrieved articles and contacted experts in the field for additional studies.

SELECTION CRITERIA: We included randomised controlled trials (RCTs) about adults with a primary diagnosis of CFS, from all diagnostic criteria, who were able to participate in exercise therapy.

DATA COLLECTION AND ANALYSIS: Two review authors independently performed study selection, ‘Risk of bias’ assessments and data extraction. We combined continuous measures of outcomes using mean differences (MDs) or standardised mean differences (SMDs). To facilitate interpretation of SMDs, we re-expressed SMD estimates as MDs on more common measurement scales. We combined dichotomous outcomes using risk ratios (RRs). We assessed the certainty of evidence using GRADE.

MAIN RESULTS: We included eight RCTs with data from 1518 participants.Exercise therapy lasted from 12 weeks to 26 weeks. The studies measured effect at the end of the treatment and at long-term follow-up, after 50 weeks or 72 weeks.

Seven studies used aerobic exercise therapies such as walking, swimming, cycling or dancing, provided at mixed levels in terms of intensity of the aerobic exercise from very low to quite rigorous, and one study used anaerobic exercise. Control groups consisted of passive control, including treatment as usual, relaxation or flexibility (eight studies); cognitive behavioural therapy (CBT) (two studies); cognitive therapy (one study); supportive listening (one study); pacing (one study); pharmacological treatment (one study) and combination treatment (one study).Most studies had a low risk of selection bias. All had a high risk of performance and detection bias.

Exercise therapy compared with ‘passive’ control. Exercise therapy probably reduces fatigue at end of treatment (SMD -0.66, 95% CI -1.01 to -0.31; 7 studies, 840 participants; moderate-certainty evidence; re-expressed MD -3.4, 95% CI -5.3 to -1.6; scale 0 to 33). We are uncertain if fatigue is reduced in the long term because the certainty of the evidence is very low (SMD -0.62, 95 % CI -1.32 to 0.07; 4 studies, 670 participants; re-expressed MD -3.2, 95% CI -6.9 to 0.4; scale 0 to 33).

We are uncertain about the risk of serious adverse reactions because the certainty of the evidence is very low (RR 0.99, 95% CI 0.14 to 6.97; 1 study, 319 participants).Exercise therapy may moderately improve physical functioning at end of treatment, but the long-term effect is uncertain because the certainty of the evidence is very low. Exercise therapy may also slightly improve sleep at end of treatment and at long term. The effect of exercise therapy on pain, quality of life and depression is uncertain because evidence is missing or of very low certainty.

Exercise therapy compared with CBT. Exercise therapy may make little or no difference to fatigue at end of treatment (MD 0.20, 95% CI -1.49 to 1.89; 1 study, 298 participants; low-certainty evidence), or at long-term follow-up (SMD 0.07, 95% CI -0.13 to 0.28; 2 studies, 351 participants; moderate-certainty evidence).

We are uncertain about the risk of serious adverse reactions because the certainty of the evidence is very low (RR 0.67, 95% CI 0.11 to 3.96; 1 study, 321 participants).The available evidence suggests that there may be little or no difference between exercise therapy and CBT in physical functioning or sleep (low-certainty evidence) and probably little or no difference in the effect on depression (moderate-certainty evidence). We are uncertain if exercise therapy compared to CBT improves quality of life or reduces pain because the evidence is of very low certainty.

Exercise therapy compared with adaptive pacing. Exercise therapy may slightly reduce fatigue at end of treatment (MD -2.00, 95% CI -3.57 to -0.43; scale 0 to 33; 1 study, 305 participants; low-certainty evidence) and at long-term follow-up (MD -2.50, 95% CI -4.16 to -0.84; scale 0 to 33; 1 study, 307 participants; low-certainty evidence).

We are uncertain about the risk of serious adverse reactions (RR 0.99, 95% CI 0.14 to 6.97; 1 study, 319 participants; very low-certainty evidence).The available evidence suggests that exercise therapy may slightly improve physical functioning, depression and sleep compared to adaptive pacing (low-certainty evidence). No studies reported quality of life or pain.Exercise therapy compared with antidepressants. We are uncertain if exercise therapy, alone or in combination with antidepressants, reduces fatigue and depression more than antidepressant alone, as the certainty of the evidence is very low. The one included study did not report on adverse reactions, pain, physical functioning, quality of life, sleep or long-term results.

AUTHORS’ CONCLUSIONS: Exercise therapy probably has a positive effect on fatigue in adults with CFS compared to usual care or passive therapies. The evidence regarding adverse effects is uncertain. Due to limited evidence it is difficult to draw conclusions about the comparative effectiveness of CBT, adaptive pacing or other interventions. All studies were conducted with outpatients diagnosed with 1994 criteria of the Centers for Disease Control and Prevention or the Oxford criteria, or both. Patients diagnosed using other criteria may experience different effects.

Source: Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2019 Oct 2;10:CD003200. doi: 10.1002/14651858.CD003200.pub8. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31577366

Cognitive behavioural therapy for myalgic encephalomyelitis/chronic fatigue syndrome is not effective. Re-analysis of a Cochrane review

Abstract:

Analysis of the 2008 Cochrane review of cognitive behavioural therapy for chronic fatigue syndrome shows that seven patients with mild chronic fatigue syndrome need to be treated for one to report a small, short-lived subjective improvement of fatigue. This is not matched by an objective improvement of physical fitness or employment and illness benefit status. Most studies in the Cochrane review failed to report on safety or adverse reactions. Patient evidence suggests adverse outcomes in 20 per cent of cases. If a trial of a drug or surgical procedure uncovered a similar high rate, it would be unlikely to be accepted as safe. It is time to downgrade cognitive behavioural therapy to an adjunct support-level therapy, rather than a treatment for chronic fatigue syndrome.

Source: Vink M, Vink-Niese A. Cognitive behavioural therapy for myalgic encephalomyelitis/chronic fatigue syndrome is not effective. Re-analysis of a Cochrane review. Health Psychol Open. 2019 May 2;6(1):2055102919840614. doi: 10.1177/2055102919840614. eCollection 2019 Jan-Jun. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498783/  (Full article)

WITHDRAWN: Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome

Abstract:

BACKGROUND: Chronic fatigue is increasingly common. Conventional medical care is limited in treating chronic fatigue, leading some patients to use traditional Chinese medicine therapies, including herbal medicine.

OBJECTIVES: To assess the effectiveness of traditional Chinese medicine herbal products in treating idiopathic chronic fatigue and chronic fatigue syndrome.

SEARCH METHODS: The following databases were searched for terms related to traditional Chinese medicine, chronic fatigue, and clinical trials: CCDAN Controlled Trials Register (July 2009), MEDLINE (1966-2008), EMBASE (1980-2008), AMED (1985-2008), CINAHL (1982-2008), PSYCHINFO (1985-2008), CENTRAL (Issue 2 2008), the Chalmers Research Group PedCAM Database (2004), VIP Information (1989-2008), CNKI (1976-2008), OCLC Proceedings First (1992-2008), Conference Papers Index (1982-2008), and Dissertation Abstracts (1980-2008). Reference lists of included studies and review articles were examined and experts in the field were contacted for knowledge of additional studies.

SELECTION CRITERIA: Selection criteria included published or unpublished randomized controlled trials (RCTs) of participants diagnosed with idiopathic chronic fatigue or chronic fatigue syndrome comparing traditional Chinese medicinal herbs with placebo, conventional standard of care (SOC), or no treatment/wait lists. The outcome of interest was fatigue.

DATA COLLECTION AND ANALYSIS: 13 databases were searched for RCTs investigating TCM herbal products for the treatment of chronic fatigue. Over 2400 references were located. Studies were screened and assessed for inclusion criteria by two authors.

MAIN RESULTS: No studies that met all inclusion criteria were identified.

AUTHORS’ CONCLUSIONS: Although studies examining the use of TCM herbal products for chronic fatigue were located, methodologic limitations resulted in the exclusion of all studies. Of note, many of the studies labelled as RCTs and conducted in China did not utilize rigorous randomization procedures. Improvements in methodology in future studies is required for meaningful synthesis of data.

Source: Adams D, Wu T, Yang X, Tai S, Vohra S. WITHDRAWN: Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome. Cochrane Database Syst Rev. 2018 Oct 15;10:CD006348. doi: 10.1002/14651858.CD006348.pub3. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/30321452

Exercise therapy for chronic fatigue syndrome

Update in

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is characterised by persistent, medically unexplained fatigue, as well as symptoms such as musculoskeletal pain, sleep disturbance, headaches and impaired concentration and short-term memory. CFS presents as a common, debilitating and serious health problem. Treatment may include physical interventions, such as exercise therapy, which was last reviewed in 2004.

OBJECTIVES: The objective of this review was to determine the effects of exercise therapy (ET) for patients with CFS as compared with any other intervention or control.• Exercise therapy versus ‘passive control’ (e.g. treatment as usual, waiting-list control, relaxation, flexibility).• Exercise therapy versus other active treatment (e.g. cognitive-behavioural therapy (CBT), cognitive treatment, supportive therapy, pacing, pharmacological therapy such as antidepressants).• Exercise therapy in combination with other specified treatment strategies versus other specified treatment strategies (e.g. exercise combined with pharmacological treatment vs pharmacological treatment alone).

SEARCH METHODS: We searched The Cochrane Collaboration Depression, Anxiety and Neurosis Controlled Trials Register (CCDANCTR), the Cochrane Central Register of Controlled Trials (CENTRAL) and SPORTDiscus up to May 2014 using a comprehensive list of free-text terms for CFS and exercise. We located unpublished or ongoing trials through the World Health Organization (WHO) International Clinical Trials Registry Platform (to May 2014). We screened reference lists of retrieved articles and contacted experts in the field for additional studies

SELECTION CRITERIA: Randomised controlled trials involving adults with a primary diagnosis of CFS who were able to participate in exercise therapy. Studies had to compare exercise therapy with passive control, psychological therapies, adaptive pacing therapy or pharmacological therapy.

DATA COLLECTION AND ANALYSIS: Two review authors independently performed study selection, risk of bias assessments and data extraction. We combined continuous measures of outcomes using mean differences (MDs) and standardised mean differences (SMDs). We combined serious adverse reactions and drop-outs using risk ratios (RRs). We calculated an overall effect size with 95% confidence intervals (CIs) for each outcome.

MAIN RESULTS: We have included eight randomised controlled studies and have reported data from 1518 participants in this review. Three studies diagnosed individuals with CFS using the 1994 criteria of the Centers for Disease Control and Prevention (CDC); five used the Oxford criteria. Exercise therapy lasted from 12 to 26 weeks. Seven studies used variations of aerobic exercise therapy such as walking, swimming, cycling or dancing provided at mixed levels in terms of intensity of the aerobic exercise from very low to quite rigorous, whilst one study used anaerobic exercise. Control groups consisted of passive control (eight studies; e.g. treatment as usual, relaxation, flexibility) or CBT (two studies), cognitive therapy (one study), supportive listening (one study), pacing (one study), pharmacological treatment (one study) and combination treatment (one study). Risk of bias varied across studies, but within each study, little variation was found in the risk of bias across our primary and secondary outcome measures.Investigators compared exercise therapy with ‘passive’ control in eight trials, which enrolled 971 participants. Seven studies consistently showed a reduction in fatigue following exercise therapy at end of treatment, even though the fatigue scales used different scoring systems: an 11-item scale with a scoring system of 0 to 11 points (MD -6.06, 95% CI -6.95 to -5.17; one study, 148 participants; low-quality evidence); the same 11-item scale with a scoring system of 0 to 33 points (MD -2.82, 95% CI -4.07 to -1.57; three studies, 540 participants; moderate-quality evidence); and a 14-item scale with a scoring system of 0 to 42 points (MD -6.80, 95% CI -10.31 to -3.28; three studies, 152 participants; moderate-quality evidence). Serious adverse reactions were rare in both groups (RR 0.99, 95% CI 0.14 to 6.97; one study, 319 participants; moderate-quality evidence), but sparse data made it impossible for review authors to draw conclusions. Study authors reported a positive effect of exercise therapy at end of treatment with respect to sleep (MD -1.49, 95% CI -2.95 to -0.02; two studies, 323 participants), physical functioning (MD 13.10, 95% CI 1.98 to 24.22; five studies, 725 participants) and self-perceived changes in overall health (RR 1.83, 95% CI 1.39 to 2.40; four studies, 489 participants). It was not possible for review authors to draw conclusions regarding the remaining outcomes.Investigators compared exercise therapy with CBT in two trials (351 participants). One trial (298 participants) reported little or no difference in fatigue at end of treatment between the two groups using an 11-item scale with a scoring system of 0 to 33 points (MD 0.20, 95% CI -1.49 to 1.89). Both studies measured differences in fatigue at follow-up, but neither found differences between the two groups using an 11-item fatigue scale with a scoring system of 0 to 33 points (MD 0.30, 95% CI -1.45 to 2.05) and a nine-item Fatigue Severity Scale with a scoring system of 1 to 7 points (MD 0.40, 95% CI -0.34 to 1.14). Serious adverse reactions were rare in both groups (RR 0.67, 95% CI 0.11 to 3.96). We observed little or no difference in physical functioning, depression, anxiety and sleep, and we were not able to draw any conclusions with regard to pain, self-perceived changes in overall health, use of health service resources and drop-out rate. With regard to other comparisons, one study (320 participants) suggested a general benefit of exercise over adaptive pacing, and another study (183 participants) a benefit of exercise over supportive listening. The available evidence was too sparse to draw conclusions about the effect of pharmaceutical interventions.

AUTHORS’ CONCLUSIONS: Patients with CFS may generally benefit and feel less fatigued following exercise therapy, and no evidence suggests that exercise therapy may worsen outcomes. A positive effect with respect to sleep, physical function and self-perceived general health has been observed, but no conclusions for the outcomes of pain, quality of life, anxiety, depression, drop-out rate and health service resources were possible. The effectiveness of exercise therapy seems greater than that of pacing but similar to that of CBT. Randomised trials with low risk of bias are needed to investigate the type, duration and intensity of the most beneficial exercise intervention.

Update of

 

Source: Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2015 Feb 10;(2):CD003200. doi: 10.1002/14651858.CD003200.pub3. https://www.ncbi.nlm.nih.gov/pubmed/25674924

Comments

    • Tom Kindlon 2016 Apr 18 11:38 a.m.

      James C Coyne PhD has blogged here https://jcoynester.wordpress.com/2016/03/20/why-the-cochrane-collaboration-needs-to-clean-up-conflicts-of-interest/ about my comment:

      “Selective reporting (outcome bias)” and White et al. (2011) I don’t believe that White et al. (2011) (the PACE Trial) (3) should be classed as having a low risk of bias under “Selective reporting (outcome bias)” (Figure 2, page 15). According to the Cochrane Collaboration’s tool for assessing risk of bias (21), the category of low risk of bias is for: “The study protocol is available and all of the study’s pre-specified (primary and secondary) outcomes that are of interest in the review have been reported in the pre-specified way”. This is not the case in the PACE Trial. The three primary efficacy outcomes can be seen in the published protocol (22). None have been reported in the pre-specified way. The Cochrane Collaboration’s tool for assessing risk of bias states that a “high risk” of bias applies if any one of several criteria are met, including that “not all of the study’s pre-specified primary outcomes have been reported” or “one or more primary outcomes is reported using measurements, analysis methods or subsets of the data (e.g. subscales) that were not pre-specified”. In the PACE Trial, the third primary outcome measure (the number of “overall improvers”) was never published. Also, the other two primary outcome measures were reported using analysis methods that were not pre-specified (including switching from the bimodal to the Likert scoring method for The Chalder Fatigue Scale, one of the primary outcomes in your review). These facts mean that the “high risk of bias” category should apply.

      and the response I received from one of the authors .

More from Tom Kindlon

      • Tom Kindlon 2015 Sep 14 4:57 p.m.

        (contd.)

        Compliance

        The review doesn’t include any information on compliance. I’m not sure that there is much published information on this but I know there was a measure based on attendance at therapy sessions (which could be conducted over the phone) given for the PACE Trial (3). Ideally, it would be interesting if you could obtain some unpublished data from activity logs, records from heart-rate monitors, and other records to help build up a picture of what exercise was actually performed and the level of compliance. Information on adherence and what exercise was actually done is important in terms of helping clinicians, and indeed patients, to interpret and use the data. I mention patients because patients’ own decisions about their behaviour is likely to be affected by the medical information available to them, both within and outside of a supervised programme of graded exercise; unlike with an intervention like a drug, patients can undertake exercise without professional supervision.

        “Selective reporting (outcome bias)” and White et al. (2011)

        I don’t believe that White et al. (2011) (the PACE Trial) (3) should be classed as having a low risk of bias under “Selective reporting (outcome bias)” (Figure 2, page 15). According to the Cochrane Collaboration’s tool for assessing risk of bias (21), the category of low risk of bias is for: “The study protocol is available and all of the study’s pre-specified (primary and secondary) outcomes that are of interest in the review have been reported in the pre-specified way”. This is not the case in the PACE Trial. The three primary efficacy outcomes can be seen in the published protocol (22). None have been reported in the pre-specified way. The Cochrane Collaboration’s tool for assessing risk of bias states that a “high risk” of bias applies if any one of several criteria are met, including that “not all of the study’s pre-specified primary outcomes have been reported” or “one or more primary outcomes is reported using measurements, analysis methods or subsets of the data (e.g. subscales) that were not pre-specified”. In the PACE Trial, the third primary outcome measure (the number of “overall improvers”) was never published. Also, the other two primary outcome measures were reported using analysis methods that were not pre-specified (including switching from the bimodal to the Likert scoring method for The Chalder Fatigue Scale, one of the primary outcomes in your review). These facts mean that the “high risk of bias” category should apply.

        Thank you for taking the time to read my comments.

        Tom Kindlon

        Conflict of Interest statement:

        I am a committee member of the Irish ME/CFS Association and do a variety of unpaid work for the Association.

        (continues)

    More from Tom Kindlon

  • Laurie Thomas 2015 Feb 24 11:58 a.m.

    Clinical studies of chronic fatigue syndrome are plagued by serious problems in the inclusion/exclusion criteria. These problems stem from the fact that the syndrome consists of nonspecific symptoms that are “medically unexplained.” However, there is a major difference between medically unexplained and medically inexplicable. The symptoms of chronic fatigue syndrome can result from a serious circulatory problem that is easily overlooked. In 2003, Peckerman and coworkers showed that low cardiac output, as measured by impedance cardiography, predicts the severity of symptoms in CFS patients.[1] Miwa and Fujita found a small left ventricular size leading to low cardiac output in CFS patients with orthostatic intolerance.[2] Porter and coworkers reported that a case of femoral arteriovenous fistula causing high-output cardiac failure was originally misdiagnosed as chronic fatigue syndrome.[3]

    The studies of graded exercise for management of CFS are based on the presumption that CFS is the result of laziness and deconditioning and that the solution to the problem is to persuade the patient to exercise. Yet in many reported cases, the real problem was unrecognized cardiac decompensation. This state of cardiac decompensation could account for the push-crash phenomenon (serious, prolonged adverse events from overexertion) among people with CFS. Thus, a graded exercise program that might be beneficial for the large number of people who are tired and achy because of major depressive disorder could be catastrophic for the relatively small number of people whose problem is due to cardiac decompensation. Unfortunately, the existing studies of exercise for management of CFS do not shed light on this problem. The patients whose exercise intolerance is too severe to allow them to participate in the exercise program might refuse to enroll or might be dismissed as noncompliant if they try but fail to exercise. Yet as a result of the positive results of graded exercise for subjects whose real problem is major depressive disorder, patients with unrecognized cardiac decompensation are being scolded for failing to exercise.

    For ethical and scientific reasons, the protocol for a clinical study of subjects with CFS should be based on the best possible model for clinical management of CFS patients. It would begin with a careful assessment of the subject’s circulatory status. This assessment should include a tilt-table test, or at least a measurement of supine, sitting, and standing pulse and blood pressure. Any circulatory problem should be addressed appropriately. (Note that once the patient’s condition is found to be due to a circulatory problem, the patient no longer fits the inclusion criteria of “medically unexplained” symptoms.)

    As improper diet is the most prevalent cause of chronic ill-health, the cardiology assessment should be followed by a run-in period of at least a week of optimal dietary management. Subjects should be fed a low-fat (<10% of calories), purely plant-based diet that excludes the most common causes of food allergies or intolerance syndromes (i.e., wheat, rye, barley, corn, soy, strawberries, and citrus fruits). To ensure adherence, the diet should be administered in a residential setting. This kind of low-fat, plant-based diet can bring about a significant drop in blood pressure in hypertensive patients within 7 days, even if the patients stop taking blood pressure medication at baseline.[4] This correction of hypertension results from the decrease in systemic resistance. Thus, this diet could lead to a significant improvement in circulation, which would be beneficial to patients whose symptoms are due to poor circulation, even if they are not hypertensive. Note also that the elimination of poorly tolerated foods is the only reliable way to establish that the patient’s problem is due to a food intolerance. Of course, once the subject’s problem has been shown to be dietary in origin, the subject no longer has “medically unexplained” symptoms and thus no longer fits the inclusion criteria for a study of CFS.

    Many patients with a diagnosis of CFS are inactive, but they may be inactive because they are sick, rather than being sick because they are inactive. Thus, any study of exercise and CFS should be structured to establish the direction of causality. If a study of subjects with a diagnosis of CFS involves exercise, the outcome variables must involve some measurement of the subjects’ overall activity levels, not just to assess compliance with the exercise program but to assess whether the subjects are merely wasting their energy on the exercises and thus become less able to perform activities of daily living. In that situation, the exercise program could actually decrease the subject’s quality of life.

    [1] Peckerman A, LaManca JJ, Dahl KA, Chemitiganti R, Qureishi B, Natelson BH. Abnormal impedance cardiography predicts symptom severity in chronic fatigue syndrome. Am J Med Sci. 2003 Aug;326(2):55-60.

    [2] Miwa K1, Fujita M. Small heart with low cardiac output for orthostatic intolerance in patients with chronic fatigue syndrome.Clin Cardiol. 2011 Dec;34(12):782-6. doi: 10.1002/clc.20962. Epub 2011 Nov 28.

    [3] Porter J1, Al-Jarrah Q1, Richardson S. A case of femoral arteriovenous fistula causing high-output cardiac failure, originally misdiagnosed as chronic fatigue syndrome. Case Rep Vasc Med. 2014;2014:510429. doi: 10.1155/2014/510429. Epub 2014 May 20.

    [4] McDougall J1, Thomas LE, McDougall C, Moloney G, Saul B, Finnell JS, Richardson K, Petersen KM.Effects of 7 days on an ad libitum low-fat vegan diet: the McDougall Program cohort. Nutr J. 2014 Oct 14;13:99. doi: 10.1186/1475-2891-13-99.

  • Joan Crawford 2015 Feb 19 07:58 a.m.

    This review states: “Chronic fatigue syndrome (CFS) is characterised by persistent, medically unexplained fatigue, as well as symptoms such as musculoskeletal pain, sleep disturbance, headaches and impaired concentration and short-term memory.”

    This is important because the above description of CFS and the addition of trials in the review only requiring chronic fatigue as an inclusionary requirement (Sharpe et al, 1991) makes generalisation of the findings problematic as many patients with major depressive disorder (MDD) would also meet the above description of CFS and Sharpe et al.’s (1991) criteria if their condition was fatiguing – a common feature – along with muscular aches and pains, sleep disturbance, cognitive difficulties and so on. The high percentage of patients included in these trials suffering from depression (Table 1. Study demographics) indicates this may be their primary condition – confounding the results. Exercise, through behavioural activation programs, has a moderately positive impact on patients with depression (Cooney et al., 2013). It is unclear whether the modest improvement seen in some of these trials can be accounted for by an improvement in low mood caused by depression. Moreover, where there is data there is a high usage of antidepressants in patients included in the reviewed trials (Table 1. Study demographics).

    Of the eight exercise trials included in this review, five used broad inclusion criteria (Sharpe et al, 1991) (N=1287) – 85% of all participants. Two of these studies also used a version of the London criteria, which did not exclude patients with depression and other psychiatric conditions as originally specified by the authors making it hard to assess how these criteria were operationalised. Three further trials used the CDC Fukuda (1994) CFS criteria (N=231). While these purport to be more selective, they do not necessary include patients whose primary difficulties include post exertional weakness and debility and flu-like symptoms and so on beyond broadly defined fatigue and other general symptoms which could be attributed to CFS or MDD.

    There is also an issue with lack of evidence of patients’ fidelity to exercise programs using objective measures. We do not know if patients increased their activity as suggested to them by their clinicians. Without using devises such as actimeters or pedometers to track daily activity levels we have no accurate way of assessing whether an increase in activity occurred and whether this helps. Black & McCully’s (2005) study demonstrates objectively the difficulties patients face when trying to increase activity and concluded that they were exercise intolerant, unable to sustain activity targets.

    The report is bold in stating “no evidence suggests that exercise therapy may worsen outcomes“. Many patient surveys from across the world report numerous instances of harm and worsening of symptoms from taking part in exercise programs. For a summary of the difficulties and limitations of the reporting of harms, in and outside of clinical trials, and why these might be underestimated please see Kindlon (2011).

    References

    Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE (2013). Exercise for depression. The Cochrane Library. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD004366.pub6/abstract

    Fukuda, K., Straus, S.E., Hickie, I., Sharpe, M.C., Dobbins, J.G., & Komaroff, A. (1994). The chronic fatigue syndrome: A comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Annals of Internal Medicine, 121(12), 953-959.

    Kindlon T. (2011). Reporting of harms associated with graded exercise therapy and cognitive behavioural therapy in Myalgic Encephalomyelitis/chronic fatigue syndrome. Bulletin of the IACFS/ME. 19(2): 59-111.

    M, Archard L, Banatvala J, Borysiewicz LK, Clare AW, David A, et al. (1991). Chronic fatigue syndrome: guidelines for research. Journal of the Royal Society of Medicine, 84(2):118–21.

  • Ellen M Goudsmit 2015 Feb 14 4:49 p.m.

    I had contact with the main author to alert her to certain misconceptions published earlier. Sadly, I found I had wasted my time.

    For example, we can not tell how many, if any, patients in the PACE trial met the London criteria. Having read that the researchers planned to select individuals with ME and had listed the criteria in the protocol, I checked that Prof. White would use the original version which had not been published. I had been the Chair of the Research Working Group at AFME when they were being tested and still had a copy. They came with a questionnaire as well as a physician to establish their reliability. Prof. White was unwilling to confirm that he would use the original so in light of the uncertainty, I requested that he did not cite me as a co-author. I did not work on the lay version published in the Westcare report which I felt was deeply flawed. I was right to be cautious. The trial manual indicates that the researchers adapted the lay version and I could tell from the results that the London criteria were not used as they exclude individuals with psychological disorders so the percentage for that variable should have been nil. It wasn’t.

    A second point. The review does not pay the required attention to the lack of actigraphy, an objective measure to confirm fidelity to the protocol. This has been included in most studies conducted in the USA and the Netherlands. The results from actigraphy indicate that, except for 7 individuals, there were no significant increases in activity after GET and similar therapies. According to Friedberg who assessed the phenomenon, patients on exercise trials tend to reprioritise their activities, choosing those that result in less stress etc. In short, they learn to pace themselves (Goudsmit et al 2012). That is why they feel better and less fatigued, but it’s not possible to attribute improvement to an increase in activity (or fitness).

    Pacing was not defined and adaptive pacing therapy (APT) refers to a programme consisting of several components including stress management, advice on sleeping etc. There are no data for pacing alone in the PACE trial, so to conclude that GET is superior to pacing therapies is premature. There is only one pacing therapy. Pacing is not a therapy. It’s a simple strategy. Research by Jason suggests that people who pace themselves feel better, irrespective of the protocol they are on.

    Finally, we know that many patients have adverse reactions to activity. It’s a criterion for diagnosis. To dismiss them (“no evidence that exercise therapy worsens outcomes”) is hard to comprehend. Every survey in every country to date has revealed that GET does have marked adverse reactions and can result in relapse. See also Sisto et al and Black and McCully, cited in Goudsmit et al 2012.

    To summarise: lack of a definition of pacing resulting in confusion, repetition of incorrect information, failure to consider the findings from objective measures suggesting patients did not adhere to the protocol and ignoring consistent reports from surveys that undermine one’s conclusions. I expect more objectivity and attention to detail from the Cochrane Library.

    Goudsmit, EM., Jason, LA, Nijs, J and Wallman, KE. Pacing as a strategy to improve energy management in myalgic encephalomyelitis/chronic fatigue syndrome: A consensus document. Disability and Rehabilitation, 2012, 34, 13, 1140-1147. Online 19th December. doi: 10.3109/09638288.2011.635746.

  • This article was mentioned in a comment by Tom Kindlon 2015 Oct 06 4:36 p.m.

    See: Randomised controlled trial of cognitive behaviour therapy delivered in groups of patients with chronic fatigue syndrome. [Psychother Psychosom. 2015.]

 

Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome

Abstract:

BACKGROUND: Chronic fatigue is increasingly common. Conventional medical care is limited in treating chronic fatigue, leading some patients to use traditional Chinese medicine therapies, including herbal medicine.

OBJECTIVES: To assess the effectiveness of traditional Chinese medicine herbal products in treating idiopathic chronic fatigue and chronic fatigue syndrome.

SEARCH STRATEGY: The following databases were searched for terms related to traditional Chinese medicine, chronic fatigue, and clinical trials: CCDAN Controlled Trials Register (July 2009), MEDLINE (1966-2008), EMBASE (1980-2008), AMED (1985-2008), CINAHL (1982-2008), PSYCHINFO (1985-2008), CENTRAL (Issue 2 2008), the Chalmers Research Group PedCAM Database (2004), VIP Information (1989-2008), CNKI (1976-2008), OCLC Proceedings First (1992-2008), Conference Papers Index (1982-2008), and Dissertation Abstracts (1980-2008). Reference lists of included studies and review articles were examined and experts in the field were contacted for knowledge of additional studies.

SELECTION CRITERIA: Selection criteria included published or unpublished randomized controlled trials (RCTs) of participants diagnosed with idiopathic chronic fatigue or chronic fatigue syndrome comparing traditional Chinese medicinal herbs with placebo, conventional standard of care (SOC), or no treatment/wait lists. The outcome of interest was fatigue.

DATA COLLECTION AND ANALYSIS: 13 databases were searched for RCTs investigating TCM herbal products for the treatment of chronic fatigue. Over 2400 references were located. Studies were screened and assessed for inclusion criteria by two authors.

MAIN RESULTS: No studies that met all inclusion criteria were identified.

AUTHORS’ CONCLUSIONS: Although studies examining the use of TCM herbal products for chronic fatigue were located, methodologic limitations resulted in the exclusion of all studies. Of note, many of the studies labelled as RCTs and conducted in China did not utilize rigorous randomization procedures. Improvements in methodology in future studies is required for meaningful synthesis of data.

 

Source:Adams D, Wu T, Yang X, Tai S, Vohra S. Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome. Cochrane Database Syst Rev. 2009 Oct 7;(4):CD006348. doi: 10.1002/14651858.CD006348.pub2. https://www.ncbi.nlm.nih.gov/pubmed/19821361 

 

Cognitive behaviour therapy for chronic fatigue syndrome in adults

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is a common, debilitating and serious health problem. Cognitive behaviour therapy (CBT) may help to alleviate the symptoms of CFS.

OBJECTIVES: To examine the effectiveness and acceptability of CBT for CFS, alone and in combination with other interventions, compared with usual care and other interventions.

SEARCH STRATEGY: CCDANCTR-Studies and CCDANCTR-References were searched on 28/3/2008. We conducted supplementary searches of other bibliographic databases. We searched reference lists of retrieved articles and contacted trial authors and experts in the field for information on ongoing/completed trials.

SELECTION CRITERIA: Randomised controlled trials involving adults with a primary diagnosis of CFS, assigned to a CBT condition compared with usual care or another intervention, alone or in combination.

DATA COLLECTION AND ANALYSIS: Data on patients, interventions and outcomes were extracted by two review authors independently, and risk of bias was assessed for each study. The primary outcome was reduction in fatigue severity, based on a continuous measure of symptom reduction, using the standardised mean difference (SMD), or a dichotomous measure of clinical response, using odds ratios (OR), with 95% confidence intervals (CI).

MAIN RESULTS: Fifteen studies (1043 CFS participants) were included in the review. When comparing CBT with usual care (six studies, 373 participants), the difference in fatigue mean scores at post-treatment was highly significant in favour of CBT (SMD -0.39, 95% CI -0.60 to -0.19), with 40% of CBT participants (four studies, 371 participants) showing clinical response in contrast with 26% in usual care (OR 0.47, 95% CI 0.29 to 0.76). Findings at follow-up were inconsistent. For CBT versus other psychological therapies, comprising relaxation, counselling and education/support (four studies, 313 participants), the difference in fatigue mean scores at post-treatment favoured CBT (SMD -0.43, 95% CI -0.65 to -0.20). Findings at follow-up were heterogeneous and inconsistent. Only two studies compared CBT against other interventions and one study compared CBT in combination with other interventions against usual care.

AUTHORS’ CONCLUSIONS: CBT is effective in reducing the symptoms of fatigue at post-treatment compared with usual care, and may be more effective in reducing fatigue symptoms compared with other psychological therapies. The evidence base at follow-up is limited to a small group of studies with inconsistent findings. There is a lack of evidence on the comparative effectiveness of CBT alone or in combination with other treatments, and further studies are required to inform the development of effective treatment programmes for people with CFS.

Comment inReview: CBT reduces fatigue in adults with chronic fatigue syndrome but effects at follow-up unclear. [Evid Based Ment Health. 2009]

Update of:  Cognitive behaviour therapy for adults with chronic fatigue syndrome. [Cochrane Database Syst Rev. 2000]

 

Source: Price JR, Mitchell E, Tidy E, Hunot V. Cognitive behaviour therapy for chronic fatigue syndrome in adults. Cochrane Database Syst Rev. 2008 Jul 16;(3):CD001027. doi: 10.1002/14651858.CD001027.pub2.https://www.ncbi.nlm.nih.gov/pubmed/18646067

 

Exercise therapy for chronic fatigue syndrome

Update in: Exercise therapy for chronic fatigue syndrome. [Cochrane Database Syst Rev. 2015]

 

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is an illness characterised by persistent medically unexplained fatigue. CFS is a serious health-care problem with a prevalence of up to 3%. Treatment strategies for CFS include psychological, physical and pharmacological interventions.

OBJECTIVES: To investigate the relative effectiveness of exercise therapy and control treatments for CFS.

SEARCH STRATEGY: CCDANCTR-Studies and CENTRAL were searched using “Chronic Fatigue” and Exercise. The Journal of Chronic Fatigue Syndrome and CFS conferences were handsearched. Experts in the field were contacted. Clinicaltrials.gov and controlled-trials.com were searched.

SELECTION CRITERIA: Only Randomised Controlled Trials (RCT) including participants with a clinical diagnosis of CFS and of any age were included.

DATA COLLECTION AND ANALYSIS: The full articles of studies identified were inspected by two reviewers (ME and HMG). Continuous measures of outcome were combined using standardised mean differences. An overall effect size was calculated for each outcome with 95% confidence intervals. One sensitivity analysis was undertaken to test the robustness of the results.

MAIN RESULTS: Nine studies were identified for possible inclusion in this review, and five of those studies were included. At 12 weeks, those receiving exercise therapy were less fatigued than the control participants (SMD -0.77, 95% CIs -1.26 to -0.28). Physical functioning was significantly improved with exercise therapy group (SMD -0.64, CIs -0.96 to -0.33) but there were more dropouts with exercise therapy (RR 1.73, CIs 0.92 to 3.24). Depression was non-significantly improved in the exercise therapy group compared to the control group at 12 weeks (WMD -0.58, 95% CIs -2.08 to 0.92). Participants receiving exercise therapy were less fatigued than those receiving the antidepressant fluoxetine at 12 weeks (WMD -1.24, 95% CIs -5.31 to 2.83). Participants receiving the combination of the two interventions, exercise + fluoxetine, were less fatigued than those receiving exercise therapy alone at 12 weeks, although again the difference did not reach significance (WMD 3.74, 95% CIs -2.16 to 9.64). When exercise therapy was combined with patient education, those receiving the combination were less fatigued than those receiving exercise therapy alone at 12 weeks (WMD 0.70, 95% CIs -1.48 to 2.88).

REVIEWERS’ CONCLUSIONS: There is encouraging evidence that some patients may benefit from exercise therapy and no evidence that exercise therapy may worsen outcomes on average. However the treatment may be less acceptable to patients than other management approaches, such as rest or pacing. Patients with CFS who are similar to those in these trials should be offered exercise therapy, and their progress monitored Further high quality randomised studies are needed.

 

Source: Edmonds M, McGuire H, Price J. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2004;(3):CD003200. http://www.ncbi.nlm.nih.gov/pubmed/15266475

 

Cognitive behaviour therapy for adults with chronic fatigue syndrome

Update in: Cognitive behaviour therapy for chronic fatigue syndrome in adults. [Cochrane Database Syst Rev. 2008]

 

Abstract:

OBJECTIVES: 1. To systematically review all randomised controlled trials of cognitive-behaviour therapy (CBT) for adults with chronic fatigue syndrome (CFS); 2. To test the hypothesis that CBT is more effective than orthodox medical management or other interventions in adults with CFS.

SEARCH STRATEGY: 1. Electronic searching of bibliographic databases, including Medline, PsycLIT, Biological Abstracts, Embase, SIGLE, Index to Theses, Index to Scientific and Technical Proceedings, and Science Citation Index, using multiple search terms in order to perform a highly sensitive search. 2. Electronic searching of the Trials Register of the Depression, Anxiety and Neurosis group. 3. Citation lists of relevant studies and reviews were perused for other relevant trials. 4. Contact with the principal authors of relevant studies, and with researchers in the field.

SELECTION CRITERIA: All randomised controlled trials were included in which – adult patients with CFS; – received CBT or a control intervention, being either orthodox medical management or another intervention; – and whose outcomes were assessed in an appropriate way. CBT could be either type ‘A’ (encouraging return to ‘normal’ levels of rest and activity) or type ‘B’ (encouraging rest and activity which were within levels imposed by the disorder).’

DATA COLLECTION AND ANALYSIS: The two reviewers worked independently throughout the selection of trials and data extraction, comparing findings only when there was disagreement. Relevant trials were allocated to one of three quality categories. Full data extraction, using a standardised data extraction sheet, was performed on studies which were of high or moderate quality. Trials of low quality were excluded from the review. The comparisons made to test the review hypothesis were of type ‘A’ CBT versus other intervention(s), and of type ‘B’ CBT versus other intervention(s). Functional outcome was used as the main outcome for comparison, but other appropriate outcomes were compared where possible. Results were synthesised using the Review Manager software. For dichotomous data, the odds ratio was calculated for each study. For continuous data, effect sizes were obtained and the standardised mean difference, with 95% confidence intervals, was calculated.

MAIN RESULTS: Only three relevant trials of adequate quality were found. These trials demonstrated that CBT significantly benefits physical functioning in adult out-patients with CFS when compared to orthodox medical management or relaxation. It is necessary to treat about two patients to prevent one additional unsatisfactory physical outcome about six months after treatment end. CBT appeared highly acceptable to the patients in these trials. There is no satisfactory evidence for the effectiveness of CBT in patients with the milder forms of CFS found in primary care or in patients who are so disabled that they are unable to attend out-patients. Additionally, there is no satisfactory evidence for the effectiveness of group CBT.

REVIEWER’S CONCLUSIONS: Cognitive behaviour therapy appears to be an effective and acceptable treatment for adult out-patients with chronic fatigue syndrome. CFS is a common and disabling disorder. Its sufferers deserve the medical profession to be more aware of the potential of this therapy to bring lasting functional benefit, and health service managers to increase its availability. Further research is needed in this important area. Trials should conform to accepted standards of reporting and methodology. The effectiveness of CBT in more and less severely disabled patients than those usually seen in out-patient clinics needs to be assessed. Trials of group CBT and in-patient CBT compared to orthodox medical management, and of CBT compared to graded activity alone, also need to be conducted.

 

Source: Price JR, Couper J. Cognitive behaviour therapy for adults with chronic fatigue syndrome. Cochrane Database Syst Rev. 2000;(2):CD001027. http://www.ncbi.nlm.nih.gov/pubmed/10796733