Clinical effects of wasabi extract containing 6-MSITC on myalgic encephalomyelitis/chronic fatigue syndrome: an open-label trial

Abstract:

Background: Wasabi (Eutrema japonicum) is a common pungent spice used in Japan. 6-Methylsulfinylhexyl isothiocyanate (6-MSITC) found in the rhizome of wasabi has been shown to have anti-inflammatory and antioxidant effects, as well as improve neuroinflammation and memory. Therefore, we hypothesized that these effects would be beneficial for treating myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The present study was conducted to investigate the effectiveness of wasabi extract containing 6-MSITC on ME/CFS in an open-label trial.

Methods: Fifteen patients (3 males, 12 females, 20-58 years old) were orally administered wasabi extract (9.6 mg of 6-MSITC/day) for 12 weeks. The following parameters and test results were compared pre- and post-treatment: performance status (PS), self-rating questionnaires, pressure pain threshold (PPT) on the occiput, Trail Making test-A (TMT-A), and hemodynamic patterns determined by an active standing test.

Results: After treatment with 6-MSITC, PS improved significantly (p = 0.001). Although the scores on the 11-item Chalder Fatigue scale (CFS-11) and numerical rating scale (NRS) of fatigue did not show significant changes, subjective symptoms improved significantly, including headache frequency (4.1 to 3.0 times/week, p = 0.001) and myalgia (4.1 to 2.4 times/week, p = 0.019), NRS brain fog scores (5.7 to 4.5, p = 0.011), difficulty finding appropriate words (4.8 to 3.7, p = 0.015), photophobia (4.8 to 3.5, p = 0.008), and the Profile of Mood Status vigor score (46.9 to 50.0, p = 0.045). The PPT of the right occiput (17.3 to 21.3 kPa, p = 0.01) and TMT-A scores (53.0 to 38.1 s, p = 0.007) also changed, suggesting reduced pain sensitivity, and improved cognitive function, respectively. Orthostatic patterns determined by a standing test did not show remarkable changes. There were no serious adverse reactions.

Conclusion: This study suggests that 6-MSITC improves PS as well as subjective symptoms such as pain and cognitive dysfunction, and psychological vitality of patients with ME/CFS. It also improved cognitive performance and increased pain thresholds in these patients. 6-MSITC may be a promising therapeutic option especially for improving cognitive dysfunction associated with ME/CFS.

Source: Oka T, Yamada Y, Lkhagvasuren B, Nakao M, Nakajima R, Kanou M, Hiramatsu R, Nabeshima YI. Clinical effects of wasabi extract containing 6-MSITC on myalgic encephalomyelitis/chronic fatigue syndrome: an open-label trial. Biopsychosoc Med. 2022 Dec 12;16(1):26. doi: 10.1186/s13030-022-00255-0. PMID: 36510244. https://bpsmedicine.biomedcentral.com/articles/10.1186/s13030-022-00255-0 (Full text)

Antioxidants and Long Covid

Abstract:

Long Covid has many symptoms that overlap with ME(myalgic encephalomyelitis)/CFS(chronic fatigue syndrome), FM(fibromyalgia), EBV(Epstein-Barr virus), CMV(cytomegalovirus), CIRS (chronic inflammatory response syndrome), MCAS(mast cell activation syndrome), POTS(postural orthostatic tachycardia syndrome), and post viral fatigue syndrome. They all portend a “long haul” with an antioxidant shortfall and elevated Ca:Mg. Oxidative stress is the root cause.

Linkage between TGF(transforming growth factor)-β, IFN(interferon)-γ, the RAS(renin angiotensin system), and the KKS(kallikrein kinin system) is discussed. Technical explanations for the renin aldosterone paradox in POTS, the betrayal of TGF-β, and the commonality of markers for the Warburg effect are offered. The etiology of the common Long Covid symptoms of post exertional malaise, fatigue, and brain fog as well as anosmia, hair loss, and GI symptoms is technically discussed. Ca:Mg is critical to the glutamate/GABA balance. The role of GABA and butyrates from the “good” intestinal bacteria in the gut-brain axis and its correlation with chronic fatigue diseases are explored.

The crosstalk between the ENS(enteric nervous system) and the ANS(autonomic nervous system) and the role of the vagus in both are emphasized. HRV(heart rate variability), the fifth vital sign, points to an expanded gut-brain-heart/lung axis. A suggested approach to all of these – Long Covid, chronic fatigue diseases, post viral fatigue syndrome, and general health – is presented.

Source: Chambers, P. Antioxidants and Long Covid. Preprints 2022, 2022100195 (doi: 10.20944/preprints202210.0195.v1).  https://www.preprints.org/manuscript/202210.0195/v1 (Full text available as PDF file)

Polyphenols as possible alternative agents in chronic fatigue: a review

Abstract:

Chronic fatigue syndrome (CFS) is a pathological state of extreme tiredness that lasts more than six months and may possess an impact on the social, emotional, or occupational functioning of an individual. CFS is characterized by profound disabling fatigue associated with infectious, rheumatological, and neurological symptoms.

The current pharmacological treatment for CFS does not offer a complete cure for the disease, and none of the available treatments show promising results.

The exact mechanism of the pathogenesis of the disease is still unknown, with current suggestions indicating the overlapping roles of the immune system, central nervous system, and neuroendocrine system.

However, the pathological mechanism revolves around inflammatory and oxidative stress markers.

Polyphenols are the most abundant secondary metabolites of plant origin, with potent antioxidant and anti-inflammatory effects, and can exert protective activity against a whole range of disorders.

The current review is aimed at highlighting the emerging role of polyphenols in CFS from both preclinical and clinical studies. Numerous agents of this class have shown promising results in different in vitro and in vivo models of chronic fatigue/CFS, predominantly by counteracting oxidative stress and the inflammatory cascade.

The clinical data in this regard is still very limited and needs expanding through randomized, placebo-controlled studies to draw final conclusions on whether polyphenols may be a class of clinically effective nutraceuticals in patients with CFS.

Source: Ullah, H., Khan, A., Riccioni, C. et al. Polyphenols as possible alternative agents in chronic fatigue: a review. Phytochem Rev (2022). https://doi.org/10.1007/s11101-022-09838-9 (Full text)

The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications

Abstract:

Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID.

Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities.

Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.

Source: Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J. 2022 Aug 31;479(16):1653-1708. doi: 10.1042/BCJ20220154. PMID: 36043493. https://portlandpress.com/biochemj/article/479/16/1653/231696/The-potential-role-of-ischaemia-reperfusion-injury (Full text)

Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases

Abstract:

The Mitochondria is a critical sub-cellular organelle that plays an integral part in a normal cellular process. Besides ATP production, the mitochondria participate in various key cellular processes such as cell signalingepigenetic regulation leading to cell proliferation, migration, apoptosis, differentiation, and autophagy – highlighting their importance to cellular health. However, mitochondrial dysfunction has serious organismal consequences, playing critical roles in the pathophysiology of many diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, pulmonary and liver diseases. In recent years, mitochondrial dysfunction has spurred a surge of interest in developing mitochondria-targeted therapies.

MitoQ is a selective antioxidant that concentrates in the mitochondria and prevents oxidative damage to the mitochondria. The therapeutic relevance of MitoQ has been studied in various diseased conditions to determine its efficacy in either slowing disease progression or alleviating symptoms. In this review, we discussed mitochondrial dysfunction in selected diseases and the therapeutic benefit of MitoQ in numerous studies.

Source: Lateef Adegboyega Sulaimon, Lukman Olalekan Afolabi, Rahmat Adetutu Adisa, Akinrinade George Ayankojo, Mariam Olanrewaju Afolabi, Abiodun Mohammed Adewolu, Xiaochun Wan. Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases. Advances in Redox Research, 2022 [In Press, Journal pre-proof]  https://www.sciencedirect.com/science/article/pii/S2667137922000091 (Full text)

Long-COVID post-viral chronic fatigue syndrome and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study

Abstract:

The immune-inflammatory response during the acute phase of COVID-19, as assessed using peak body temperature (PBT) and peripheral oxygen saturation (SpO2), predicts the severity of chronic fatigue, depression and anxiety (“physio-affective”) symptoms three to four months later. The present study was performed to characterize whether the effects of SpO2 and PBT on the physio-affective phenome of Long COVID are mediated by immune, oxidative and nitrosative stress (IO&NS) pathways.

This study assayed SpO2 and PBT during acute COVID-19, and C-reactive protein (CRP), malondialdehyde (MDA), protein carbonyls (PCs), myeloperoxidase (MPO), nitric oxide (NO), zinc, and glutathione peroxidase (Gpx) in 120 Long COVID individuals and 36 controls. Cluster analysis showed that 31.7% of the Long COVID patients had severe abnormalities in SpO2, body temperature, increased oxidative toxicity (OSTOX) and lowered antioxidant defenses (ANTIOX), and increased total Hamilton Depression (HAMD) and Anxiety (HAMA) and Fibromylagia-Fatigue (FF) scores.

Around 60% of the variance in the physio-affective phenome of Long COVID (a factor extracted from HAMD, HAMA and FF scores) was explained by OSTOX/ANTIOX ratio, PBT and SpO2. Increased PBT predicted increased CRP and lowered ANTIOX and zinc levels, while lowered SpO2 predicted lowered Gpx and increased NO production. Both PBT and SpO2 strongly predict OSTOX/ATIOX during Long COVID.

In conclusion, the impact of acute COVID-19 on the physio-affective symptoms of Long COVID is partly mediated by OSTOX/ANTIOX, especially lowered Gpx and zinc, increased MPO and NO production and lipid peroxidation-associated aldehyde formation. Post-viral physio-affective symptoms have an inflammatory origin and are partly mediated by neuro-oxidative toxicity.

Source: Hussein Kadhem Al-HakeimHaneen Tahseen Al-RubayeDhurgham Shihab Al-HadrawiAbbas F. AlmullaMichael Maes. Long-COVID post-viral chronic fatigue syndrome and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study.

Does Dietary Coenzyme Q10 plus Selenium Supplementation Ameliorate Clinical Outcomes by Modulating Oxidative Stress and Inflammation in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome?

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a neuroinflammatory, multifaceted chronic disorder of unknown cause. Accumulating data indicates a link between a redox imbalance, mitochondrial dysfunction, and inflammation status in ME/CFS. CoQ10 and selenium as effective antioxidant and anti-inflammatory agents have shown potential clinical implications in chronic diseases; however, their therapeutic benefits on ME/CFS remain elusive.

This open-label exploratory study aimed to evaluate the effectiveness of combined CoQ10 plus selenium supplementation on clinical features and circulating biomarkers in ME/CFS. Twenty-seven ME/CFS patients received an oral combination of 400 mg of CoQ10 and 200 µg of selenium daily for 8-weeks. The primary endpoint was patient-reported changes in outcome measures from baseline to 8 weeks post-intervention.

Secondary endpoint included changes in circulating biomarkers from baseline to each participant. After an 8-week intervention, a significant improvement was found for overall fatigue severity (p = 0.021) and global quality of life (p = 0.002), while there was no significant effect on the sleep disturbances (p = 0.480) among participants. After 8-weeks’ intervention, there was significantly increased total antioxidant capacity, and there were reduced lipoperoxides levels from the participants (p < 0.0001 for both). Circulating cytokine levels decreased significantly (p < 0.01 for all), but with no significant changes on the CRP, FGF21, and NT-proBNP biomarkers after supplementation.

Based on these findings, we hypothesized that long-term supplementation of combined CoQ10 and selenium may indicate a potentially beneficial synergistic effect in ME/CFS.

Source: Castro-Marrero J, Domingo JC, Cordobilla B, Ferrer R, Giralt M, Sanmartin-Sentañes R, Alegre-Martin J. Does Dietary Coenzyme Q10 plus Selenium Supplementation Ameliorate Clinical Outcomes by Modulating Oxidative Stress and Inflammation in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome? Antioxid Redox Signal. 2022 Mar 1. doi: 10.1089/ars.2022.0018. Epub ahead of print. PMID: 35229657. https://pubmed.ncbi.nlm.nih.gov/35229657/

Improvement Effects of Myelophil on Symptoms of Chronic Fatigue Syndrome in a Reserpine-Induced Mouse Model

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is associated with various symptoms, such as depression, pain, and fatigue. To date, the pathological mechanisms and therapeutics remain uncertain. The purpose of this study was to investigate the effect of myelophil (MYP), composed of Astragali Radix and Salviaemiltiorrhizae Radix, on depression, pain, and fatigue behaviors and its underlying mechanisms.

Reserpine (2 mg/kg for 10 days, intraperitoneally) induced depression, pain, and fatigue behaviors in mice. MYP treatment (100 mg/kg for 10 days, intragastrically) significantly improved depression behaviors, mechanical and thermal hypersensitivity, and fatigue behavior. MYP treatment regulated the expression of c-Fos, 5-HT1A/B receptors, and transforming growth factor β (TGF-β) in the brain, especially in the motor cortex, hippocampus, and nucleus of the solitary tract. MYP treatment decreased ionized calcium binding adapter molecule 1 (Iba1) expression in the hippocampus and increased tyrosine hydroxylase (TH) expression and the levels of dopamine and serotonin in the striatum. MYP treatment altered inflammatory and anti-oxidative-related mRNA expression in the spleen and liver.

In conclusion, MYP was effective in recovering major symptoms of ME/CFS and was associated with the regulation of dopaminergic and serotonergic pathways and TGF-β expression in the brain, as well as anti-inflammatory and anti-oxidant mechanisms in internal organs.

Source: Song JH, Won SK, Eom GH, Lee DS, Park BJ, Lee JS, Son CG, Park JY. Improvement Effects of Myelophil on Symptoms of Chronic Fatigue Syndrome in a Reserpine-Induced Mouse Model. Int J Mol Sci. 2021 Sep 22;22(19):10199. doi: 10.3390/ijms221910199. PMID: 34638540. https://pubmed.ncbi.nlm.nih.gov/34638540/

Are Circulating FGF21 and NT-proBNP promising novel biomarkers in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome?

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, disabling, and complex multisystem illness of unknown etiology. The protein FGF21 regulates glucose homeostasis and lipid metabolism, and the protein NT-proBNP is strongly associated with an elevated cardiovascular risk; however, little is known about their role in ME/CFS patients. To address this gap, we explored the association between FGF21 and NT-proBNP and oxidative stress and inflammatory markers in ME/CFS.

Twenty-one ME/CFS patients and 20 matched healthy controls were included in the study. Participants filled out validated self-reported questionnaires on their current health status covering demographic and clinical characteristics. Plasma showed significantly decreased total antioxidant capacity and increased lipoperoxides levels (p = 0.009 and p = 0.021, respectively) in ME/CFS. These ME/CFS patients also had significantly increased levels of inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α, and C-reactive protein (p < 0.05 for all) but not for IL-8 (p = 0.833) in ME/CFS, indicating low-grade systemic inflammation status. Circulating FGF21 and NT-proBNP levels were significantly higher (p < 0.0001 and p = 0.005, respectively) in ME/CFS patients than in healthy controls.

Significantly positive correlations were found between NT-proBNP levels and IL-1β and IL-6 (p = 0.04 and p = 0.01) in ME/CFS patients but not between FGF21 and these cytokines. In contrast, no significant correlations were found for either FGF21 or NT-proBNP in controls. These findings lead to the hypothesis that elevated FGF21 and NT-proBNP levels and the association between NT-proBNP and inflammation may be promising novel diagnostic and therapeutic targets in ME/CFS.

Source: Domingo JC, Cordobilla B, Ferrer R, Giralt M, Alegre-Martin J, Castro-Marrero J. Are Circulating FGF21 and NT-proBNP promising novel biomarkers in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome? Antioxid Redox Signal. 2020 Dec 22. doi: 10.1089/ars.2020.8230. Epub ahead of print. PMID: 33353469. https://pubmed.ncbi.nlm.nih.gov/33353469/

Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: a possible approach to SARS-CoV-2 ‘long-haulers’?

Abstract:

A significant number of SARS-CoV-2 (COVID-19) pandemic patients have developed chronic symptoms lasting weeks or months which are very similar to those described for myalgic encephalomyelitis/chronic fatigue syndrome. This paper reviews the current literature and understanding of the role that mitochondria, oxidative stress and antioxidants may play in the understanding of the pathophysiology and treatment of chronic fatigue. It describes what is known about the dysfunctional pathways which can develop in mitochondria and their relationship to chronic fatigue. It also reviews what is known about oxidative stress and how this can be related to the pathophysiology of fatigue, as well as examining the potential for specific therapy directed at mitochondria for the treatment of chronic fatigue in the form of antioxidants. This review identifies areas which require urgent, further research in order to fully elucidate the clinical and therapeutic potential of these approaches.

Source: Wood E, Hall KH, Tate W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: a possible approach to SARS-CoV-2 ‘long-haulers’? Chronic Dis Transl Med. 2020 Nov 21. doi: 10.1016/j.cdtm.2020.11.002. Epub ahead of print. PMID: 33251031; PMCID: PMC7680046.  https://pubmed.ncbi.nlm.nih.gov/33251031/