Two-Day Cardiopulmonary Exercise Testing in Long COVID Post-Exertional Malaise Diagnosis

Abstract:

Background: Long COVID patients present with a myriad of symptoms that can include fatigue, exercise intolerance and post exertional malaise (PEM). Long COVID has been compared to other post viral syndromes, including myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), where a reduction in day 2 cardiopulmonary exercise test (CPET) performance of a two-day CPET protocol is suggested to be a result of PEM. We investigated cardiopulmonary and perceptual responses to a two-day CPET protocol in Long COVID patients.

Methods: 15 Long COVID patients [n=7 females; mean (SD) age: 53(11) yr; BMI = 32.2(8.5) kg/m2] performed a pulmonary function test and two ramp-incremental CPETs separated by 24hr. CPET variables included gas exchange threshold (GET), V̇O2peak and WRpeak. Ratings of perceived dyspnoea and leg effort were recorded at peak exercise using the modified 0-10 Borg Scale. PEM (past six months) was assessed using the modified DePaul Symptom Questionnaire (mDSQ). One-sample t-tests were used to test significance of mean difference between days (p<0.05).

Results: mDSQ revealed PEM in 80% of patients. Lung function was normal. Responses to day 1 CPET were consistent with the presence of aerobic deconditioning in 40% of patients (V̇O2peak <80% predicted, in the absence of evidence of cardiovascular and pulmonary limitations). There were no differences between day-1 and day-2 CPET responses (all p>0.05).

Conclusion: Post exertional malaise symptoms in Long COVID patients, in the absence of differences in two-day CPET responses separated by 24hours, suggests that post-exertional malaise is not due to impaired recovery of exercise capacity between days.

Source: Gattoni C, Abbasi A, Ferguson C, Lanks CW, Decato TW, Rossiter HB, Casaburi R, Stringer WW. Two-Day Cardiopulmonary Exercise Testing in Long COVID Post-Exertional Malaise Diagnosis. Respir Physiol Neurobiol. 2024 Oct 25:104362. doi: 10.1016/j.resp.2024.104362. Epub ahead of print. PMID: 39490617. https://www.sciencedirect.com/science/article/pii/S1569904824001551 (Full text)

Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations

Abstract:

Background: Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking.

Methods: Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case–control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed.

Results: Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, e, O2CO2 T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for e/CO2, PetCO2, O2pulse, work, O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1.

Conclusions: Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered.

Trial registration number: ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.

Source: Keller, B., Receno, C.N., Franconi, C.J. et al. Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations. J Transl Med 22, 627 (2024). https://doi.org/10.1186/s12967-024-05410-5 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05410-5#Abs1 (Full text)

 

Exercise Intolerance Associated with Impaired Oxygen Extraction in Patients with Long COVID

Abstract:

Objective: Chronic mental and physical fatigue and post-exertional malaise are the more debilitating symptoms of long COVID-19. The study objective was to explore factors contributing to exercise intolerance in long COVID-19 to guide development of new therapies. Exercise capacity data of patients referred for a cardiopulmonary exercise test (CPET) and included in a COVID-19 Survivorship Registry at one urban health center were retrospectively analyzed.

Results: Most subjects did not meet normative criteria for a maximal test, consistent with suboptimal effort and early exercise termination. Mean O2 pulse peak % predicted (of 79 ± 12.9) was reduced, supporting impaired energy metabolism as a mechanism of exercise intolerance in long COVID, n=59. We further identified blunted rise in heart rate peak during maximal CPET. Our preliminary analyses support therapies that optimize bioenergetics and improve oxygen utilization for treating long COVID-19.

Source: Norweg A, Yao L, Barbuto S, Nordvig AS, Tarpey T, Collins E, Whiteson J, Sweeney G, Haas F, Leddy J. Exercise Intolerance Associated with Impaired Oxygen Extraction in Patients with Long COVID. Respir Physiol Neurobiol. 2023 Apr 17;313:104062. doi: 10.1016/j.resp.2023.104062. Epub ahead of print. PMID: 37076024; PMCID: PMC10108551. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108551/ (Full text)

Two symptoms can accurately identify post-exertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: Post-exertional malaise (PEM) is the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) yet its diverse manifestations make it difficult to recognize. Brief instruments for detecting PEM are critical for clinical and scientific progress.

Objective: To develop a clinical prediction rule for PEM.

Method: 49 ME/CFS and 10 healthy, sedentary subjects recruited from the community completed two maximal cardiopulmonary exercise tests (CPETs) separated by 24 hours.

At five different times, subjects reported symptoms which were then classified into 19 categories. The frequency of symptom reports between groups at each time point was compared using Fisher’s exact test.

Receiver operating characteristics (ROC) analysis with area under the curve calculation was used to determine the number of different types of symptom reports that were sufficient to differentiate between ME/CFS and sedentary groups. The optimal number of symptoms was determined where sensitivity and specificity of the types of symptom reports were balanced.

Results: At all timepoints, a maximum of two symptoms was optimal to determine differences between groups. Only one symptom was necessary to optimally differentiate between groups at one week following the second CPET. Fatigue, cognitive dysfunction, lack of positive feelings/mood and decrease in function were consistent predictors of ME/CFS group membership across timepoints.

Conclusion: Inquiring about post-exertional cognitive dysfunction, decline in function, and lack of positive feelings/mood may help identify PEM quickly and accurately. These findings should be validated with a larger sample of patients.

Source: Davenport, Todd E; Chu, Lily; Stevens, Staci R; Stevens, Jared; Snell, Christopher R; Van Ness, J. Mark. Two symptoms can accurately identify post-exertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome. Work. 1 Jan. 2023 : 1 – 15. https://content.iospress.com/articles/work/wor220554 (Full text)

Recovery from Exercise in Persons with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Background and Objectives: Post-exertional malaise (PEM) is the hallmark of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), but there has been little effort to quantitate the duration of PEM symptoms following a known exertional stressor.

Using a Symptom Severity Scale (SSS) that includes nine common symptoms of ME/CFS, we sought to characterize the duration and severity of PEM symptoms following two cardiopulmonary exercise tests separated by 24 h (2-day CPET).

Materials and Methods: Eighty persons with ME/CFS and 64 controls (CTL) underwent a 2-day CPET. ME/CFS subjects met the Canadian Clinical Criteria for diagnosis of ME/CFS; controls were healthy but not participating in regular physical activity. All subjects who met maximal effort criteria on both CPETs were included.

SSS scores were obtained at baseline, immediately prior to both CPETs, the day after the second CPET, and every two days after the CPET-1 for 10 days.

Results: There was a highly significant difference in judged recovery time (ME/CFS = 12.7 ± 1.2 d; CTL = 2.1 ± 0.2 d, mean ± s.e.m., Chi2 = 90.1, p < 0.0001).

The range of ME/CFS patient recovery was 1–64 days, while the range in CTL was 1–10 days; one subject with ME/CFS had not recovered after one year and was not included in the analysis.

Less than 10% of subjects with ME/CFS took more than three weeks to recover. There was no difference in recovery time based on the level of pre-test symptoms prior to CPET-1 (F = 1.12, p = 0.33).

Mean SSS scores at baseline were significantly higher than at pre-CPET-1 (5.70 ± 0.16 vs. 4.02 ± 0.18, p < 0.0001). Pharmacokinetic models showed an extremely prolonged decay of the PEM response (Chi2 > 22, p < 0.0001) to the 2-day CPET.

Conclusions: ME/CFS subjects took an average of about two weeks to recover from a 2-day CPET, whereas sedentary controls needed only two days. These data quantitate the prolonged recovery time in ME/CFS and improve the ability to obtain well-informed consent prior to doing exercise testing in persons with ME/CFS. Quantitative monitoring of PEM symptoms may provide a method to help manage PEM.

Source: Moore GE, Keller BA, Stevens J, Mao X, Stevens SR, Chia JK, Levine SM, Franconi CJ, Hanson MR. Recovery from Exercise in Persons with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Medicina. 2023; 59(3):571. https://doi.org/10.3390/medicina59030571 (Full text)

A 2-day cardiopulmonary exercise test in chronic fatigue syndrome patients who were exposed to humidifier disinfectants

Abstract:

Some survivors of humidifier disinfectants (HDs) complain of chronic, inexplicable fatigue, and post-exertional malaise (PEM). Two-day cardiopulmonary exercise tests (CPETs) performed 24 hours apart (2-day CPET protocol) are increasingly employed to evaluate PEM and related disabilities among individuals with chronic fatigue syndrome (CFS). The purpose of this study was to assess the reproducibility of CPET variables in individuals who had been exposed to HD and to show that 2-day CPET is an objective means of differentiating between fatigue conditions in people with CFS symptoms who have been exposed to HDs.

Twenty-nine HD survivors with CFS symptoms were enrolled in this study. To document and assess PEM in CFS, a 2-day CPET was conducted to measure baseline functional capacity (CPET1) and provoke PEM. Twenty-four hours later, a second CPET assessed changes in related variables, focusing on PEM effects on functional capacity. This CPET also measured changes in energy production and physiological function, objectively documenting PEM effects.

In the 2-day CPET, the peak oxygen consumption (VO2peak), VO2 at ventilatory threshold (VO2@VT), time to reach VO2peak, and time to reach VO2@VT were significantly decreased (p<0.001). The peak O2 pulse and O2 pulse at VT also decreased significantly (p<0.001). A 6-minute walk test revealed significantly decreased distance (p<0.01). This is the first study to conduct a 2-day consecutive CPET in previously exposed HD participants with CFS symptoms.

Our results confirm previous work that demonstrated abnormal responses to PEM in CFS patients. Therefore, a 2-day CPET is an objective measure to differentiate fatigue conditions in people with CFS symptoms who have been exposed to HDs.

Source: Leem JH, Jeon HE, Nam H, Kim HC, Joa KL. A 2-day cardiopulmonary exercise test in chronic fatigue syndrome patients who were exposed to humidifier disinfectants. Environ Anal Health Toxicol. 2022 Dec;37(4):e2022033-0. doi: 10.5620/eaht.2022033. Epub 2022 Nov 3. PMID: 36916046; PMCID: PMC10014750. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014750/ (Full text)

Diminished Cardiopulmonary Capacity During Post-Exertional Malaise

Reduced functional capacity and post-exertional malaise following physical activity are hallmark symptoms of Chronic Fatigue Syndrome (CFS). That these symptoms are often delayed may explain the equivocal results for clinical cardiopulmonary exercise testing with CFS patients. The reproducibility of VO2 max in healthy subjects is well documented. This may not be the case with CFS due to delayed recovery symptoms.

Purpose: To compare results from repeated exercise tests as indicators of post-exertional malaise in CFS.

Methods: Peak oxygen consumption (VO2 peak), percentage of predicted peak heart rate (HR%), and VO2 at anaerobic threshold (AT), were compared between six CFS patients and six control subjects for two maximal exercise tests separated by 24 hours.

Results: Multivariate analysis showed no significant differences between control and CFS, respectively, for test 1: VO2 peak (28.4 ± 7.2 ml/ kg/min; 26.2 ± 4.9 ml/kg/min), AT (17.5 ± 4.8 ml/kg/min; 15.0 ± 4.9 ml/ kg/min) or HR% (87.0 ± 25.4%; 94.8 ± 8.8%). However, for test 2 the CFS patients achieved significantly lower values for both VO2 peak (28.9 ± 8.0 ml/kg/min; 20.5 ± 1.8 ml/kg/min, p = 0.031) and AT (18.0 ± 5.2 ml/kg/min; 11.0 ± 3.4 ml/kg/min, p = 0.021). HR% was not significantly different (97.6 ± 27.2%; 87.8 ± 9.3%, p = 0.07). A follow-up classification analysis differentiated between CFS patients and controls with an overall accuracy of 92%.

Conclusion: In the absence of a second exercise test, the lack of any significant differences for the first test would appear to suggest no functional impairment in CFS patients. However, the results from the second test indicate the presence of a CFS related post-exertional malaise. It might be concluded then that a single exercise test is insufficient to demonstrate functional impairment in CFS patients. A second test may be necessary to document the atypical recovery response and protracted malaise unique to CFS.

Source: J. Mark Vanness, Christopher R. Snell & Staci R. Stevens (2007) Diminished Cardiopulmonary Capacity During Post-Exertional Malaise, Journal of Chronic Fatigue Syndrome, 14:2, 77-85, DOI: 10.1300/J092v14n02_07

Reproducibility of Measurements Obtained During Cardiopulmonary Exercise Testing in Individuals With Fatiguing Health Conditions – A Case Series

Abstract:

Purpose: Measurements obtained during maximal cardiopulmonary exercise testing (CPET) demonstrate high test–retest reliability, which indicates low error variance. However, measurements obtained from people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may depart from typically observed high reproducibility, which could represent functionally relevant biological variability that is characteristic of the underlying pathophysiology. The purpose of this case series was to document individual experiences with test–retest variability in CPET measurements in individuals with ME/CFS compared with other fatiguing health conditions.

Methods: In this case series, 6 women matched for age and body mass index underwent 2 maximal CPETs spaced 24 hours apart. Clients comprised 1 sedentary individual without fatigue, 1 active individual without fatigue, 1 individual with multiple sclerosis (MS), 1 individual diagnosed with HIV, 1 individual with ME/CFS and low maximal volume of oxygen consumed (VO2max), and 1 high-functioning individual with ME/CFS and high VO2max. Percent change in CPET measurements between tests was calculated for each client.

Results: Nondisabled clients and clients with MS and HIV reproduced or improved in their volume of oxygen consumed (VO2), workload (WL), heart rate (HR), and minute ventilation (VE) at ventilatory anaerobic threshold (VAT) and at peak exercise (except peak WL and VE for the individual with HIV). Neither individual with ME/CFS reproduced VO2, WL, HR, or VE at VAT within literature estimates.

Conclusions: Measurements during CPET for individual patients may relate to potential condition-specific deficits in cardiac, pulmonary, and metabolic functioning.

Source: Larson, Benjamin PT, DPT1; Davenport, Todd E. PT, DPT, MPH, OCS2,3; Stevens, Staci R. MA3; Stevens, Jared BS3; Van Ness, J. Mark PhD3,4; Snell, Christopher R. PhD3. Reproducibility of Measurements Obtained During Cardiopulmonary Exercise Testing in Individuals With Fatiguing Health Conditions: A Case Series. Cardiopulmonary Physical Therapy Journal: October 2019 – Volume 30 – Issue 4 – p 145-152 doi: 10.1097/CPT.0000000000000100 https://journals.lww.com/cptj/Abstract/2019/10000/Reproducibility_of_Measurements_Obtained_D%20uring.4.aspx

Validity of 2-Day Cardiopulmonary Exercise Testing in Male Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Introduction: Among the main characteristics of patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are effort intolerance along with a prolonged recovery from exercise and post-exertional exacerbation of ME/CFS symptoms. The gold standard for measuring the severity of physical activity intolerance is cardiopulmonary exercise testing (CPET). Multiple studies have shown that peak oxygen consumption is reduced in the majority of ME/CFS patients. A consecutive day CPET protocol has shown a difference on day 2 in ME/CFS patients in contrast to sedentary controls. Because of the low number of male ME/CFS patients in the published literature, and because of a possible gender difference in the clinical phenotype, the aim of this study was to examine whether the response to a 2-day CPET protocol in a larger sample of male ME/CFS patients was similar to that observed in females.

Methods: From 77 male patients, 25 male ME/CFS patients fulfilled the criteria of a 2-day CPET protocol for analysis. Measures of oxygen consumption (VO2), heart rate (HR), systolic and diastolic blood pressure, workload (Work), and respiratory exchange ratio (RER) were made at maximal (peak) and ventilatory threshold (VT) intensities. Data were analysed using a paired t-test.

Results: Baseline characteristics of the group were as follows. Mean age was 44 (12) years, mean BMI was 27.1 (4.4) kg/m2. Median disease duration was 10 years (IQR 7 – 13). Heart rate, systolic and diastolic blood pressure at rest and the RER did not differ significantly between CPET 1 and CPET 2. All other CPET parameters at the ventilatory threshold and maximum exercise differed significantly (p-value between <0.005 and <0.0001). All patients experienced a deterioration of performance on CPET2 as measured by the predicted and actual VO2 and workload at peak exercise and ventilatory threshold.

Conclusion: This study confirms that male ME/CFS patients have a reduction in exercise capacity in response to a consecutive day CPET. These results are similar to published results in female ME/CFS populations.

Source:

 

Markers of Cardiac Autonomic Function During Consecutive Day Peak Exercise Tests in People With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) have been shown to exhibit altered ventilatory characteristics on the second of two progressive maximal cardiopulmonary exercise tests (CPET) performed on consecutive days. However, maximal exercise can exacerbate symptoms for ME/CFS patients and cause significant post-exertional malaise. Assessment of heart rate (HR) parameters known to track post-exertional fatigue may represent more effective physiological markers of the condition and could potentially negate the need for maximal exercise testing.

Sixteen ME/CFS patients and 10 healthy controls underwent a sub-maximal warm-up followed by CPET on two consecutive days. Ventilation, ratings of perceived exertion, work rate (WR) and HR parameters were assessed throughout on both days. During sub-maximal warm-up, a time effect was identified for the ratio of low frequency to high frequency power of HR variability (p=0.02) during sub-maximal warm-up, and for HR at ventilatory threshold (p=0.03), with both being higher on Day Two of testing. A significant group (p<0.01) effect was identified for a lower post-exercise HR recovery (HRR) in ME/CFS patients. Receiver operator characteristic curve analysis of HRR revealed an area under the curve of 74.8% (p=0.02) on Day One of testing, with a HRR of 34.5bpm maximising sensitivity (63%) and specificity (40%) suggesting while HRR values are altered in ME/CFS patients, low sensitivity and specificity limit its potential usefulness as a biomarker of the condition.

Source: Nelson MJ, Buckley JD, Thomson RL, Bellenger CR, Davison K. Markers of Cardiac Autonomic Function During Consecutive Day Peak Exercise Tests in People With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Physiol. 2021 Dec 14;12:771899. doi: 10.3389/fphys.2021.771899. PMID: 34970156; PMCID: PMC8713453.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713453/ (Full text)