Patients with Fibromyalgia Scored Worse in Memory, Attention, Cognitive Function

Press release:

A cross-sectional study demonstrated significant impairments in attention, memory, and higher cognitive functions among a cohort of patients with fibromyalgia and rheumatoid arthritis (RA), according to a study published in Psychology Research and Behavior Management.1

Investigators believe deficits in the fibromyalgia cohort could be explained by secondary symptoms coupled with more severe pain. A cognitive screening could help curate personalized treatment plans to improve the quality of life among patients with RA and fibromyalgia.

“Research directly comparing cognitive performance between patients with fibromyalgia and RA is still scarce. Some studies suggested deficits of similar magnitude in both patient groups,” wrote a group of investigators led by Carmen María Galvez Sánchez, PhD, associated with the Department of Personality, Evaluation and Psychological Treatment at the University of Murcia, Spain. “In response to this exigency, there is a requisite for the evaluation of cognitive impairments in individuals with chronic pain, aiming to formulate and implement interventions rooted in neuropsychological training. This approach is intended to ameliorate cognitive performance and mitigate its consequential impact on health-related quality of life.”

In certain patients with fibromyalgia, cognitive impairment was linked to clinical pain severity, depression, fatigue, insomnia, and anxiety. Similarly, these were also reported in patients with RA, although pain and emotional symptoms within the fibromyalgia cohort.2 Symptoms of fibromyalgia and RA often include depression, fatigue, insomnia, and cognitive issues.

Investigators analyzed the performance in cognitive domains between patients with RA and fibromyalgia using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. Questionnaire scores were combined to determine the symptom severity factor, which was used as a control variable within the group comparisons.

A total of 64 patients with fibromyalgia, 34 patients with RA, and 32 healthy controls were included in the study. All patients were female.

Without controlling for the severity of symptoms, patients with either fibromyalgia or RA performed worse when compared with controls in terms of cognitive domains including verbal memory, visual memory, and strategic planning.

Additionally, over deficits were observed in the fibromyalgia cohort compared with RA. Patients with fibromyalgia reported more severe symptoms, such as pain intensity, total pain, anxiety, depression, insomnia, and fatigue, compared with patients with RA. After controlling for symptom severity a significant proportion of cognitive test, a large proportion of cognitive test parameters were not different between rheumatologic cohorts.

Limitations included the lack of information regarding the influence of psychotropic and pain medication on cognitive performance among rheumatic patients. Although the limitation could have been determined using subgroup analysis, the current sample size was too small to form these subgroups.

Further, no data on treatment and disease activity were collected in the RA subgroup and the analysis of the effects of clinical symptoms on cognitive performance was limited. Additionally, not all psychological factors that may impact cognition were assessed in the analysis. The generalizability of findings may be hindered as only women were included in the analysis and the recruitment of subjects was not randomly performed. Lastly, the RA and fibromyalgia diagnoses were performed by different rheumatologists, which may have introduced selection bias.

“Based on the present results, it is recommended that screening for cognitive deficits be part of routine diagnostics for fibromyalgia and RA, which may help to guide the design of personalized interventions to optimize cognitive performance of patients with fibromyalgia and RA,” investigators concluded.

Source: Lana Pine. HCP Live.

The influence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) family history on patients with ME/CFS

Abstract:

Aim: It is unclear if individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with family histories of ME/CFS differ from those with ME/CFS without this family history. To explore this issue, quantitative data from patients with ME/CFS and controls were collected, and we examined those with and without family histories of ME/CFS.

Methods: The samples included 400 patients with ME/CFS, and a non-ME/CFS chronic illness control group of 241 patients with multiple sclerosis (MS) and 173 with post-polio syndrome (PPS).

Results: Confirming findings from prior studies, those with ME/CFS were more likely to have family members with ME/CFS than controls. We found family histories of ME/CFS were significantly higher (18%) among the ME/CFS group than the non-ME/CFS controls (3.9%). In addition, patients with ME/CFS who had family histories of ME/CFS were more likely to have gastrointestinal symptoms than those with ME/CFS without those family histories.

Conclusions: Given the recent reports of gastrointestinal difficulties among those with ME/CFS, our findings might represent one predisposing factor for the emergence of ME/CFS.
Source: Jason LA, Ngonmedje S. The influence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) family history on patients with ME/CFS. Explor Med. 2024;5:185–92. https://doi.org/10.37349/emed.2024.00215 https://www.explorationpub.com/Journals/em/Article/1001215 (Full text)

Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients Using a Multiplatform Mass Spectrometry-Based Metabolomics Approach

Abstract:

Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40).

Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients.

We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.

Source: Martínez S, Albóniga OE, López-Huertas MR, Gradillas A, Barbas C. Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients Using a Multiplatform Mass Spectrometry-Based Metabolomics Approach. J Proteome Res. 2024 Apr 2. doi: 10.1021/acs.jproteome.3c00706. Epub ahead of print. PMID: 38566450. https://pubmed.ncbi.nlm.nih.gov/38566450/

Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects

Abstract:

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them.

To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level – OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01).

We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus.

In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients’ cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency.

This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

Source: Serrano Del Pueblo VM, Serrano-Heras G, Romero Sánchez CM, Piqueras Landete P, Rojas-Bartolome L, Feria I, Morris RGM, Strange B, Mansilla F, Zhang L, Castro-Robles B, Arias-Salazar L, López-López S, Payá M, Segura T, Muñoz-López M. Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects. Brain. 2024 Apr 2:awae101. doi: 10.1093/brain/awae101. Epub ahead of print. PMID: 38562097. https://pubmed.ncbi.nlm.nih.gov/38562097/

Research progress in the treatment of chronic fatigue syndrome through interventions targeting the hypothalamus-pituitary-adrenal axis

Abstract:

Chronic fatigue syndrome (CFS) causes great harm to individuals and society. Elucidating the pathogenesis of CFS and developing safe and effective treatments are urgently needed. This paper reviews the functional changes in the hypothalamus-pituitary-adrenal (HPA) axis in patients with CFS and the associated neuroendocrine mechanisms. Despite some controversy, the current mainstream research evidence indicates that CFS patients have mild hypocortisolism, weakened daily variation in cortisol, a weakened response to the HPA axis, and an increase in negative feedback of the HPA axis. The relationship between dysfunction of the HPA axis and the typical symptoms of CFS are discussed, and the current treatment methods are reviewed.

Source: Yi-Dan Zhang, Li-Na Wang. Research progress in the treatment of chronic fatigue syndrome through interventions targeting the hypothalamus-pituitary-adrenal axis. Front. Endocrinol., 09 April 2024, Sec. Neuroendocrine Science, Volume 15 – 2024 | https://doi.org/10.3389/fendo.2024.1373748 https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2024.1373748/full

Imbalanced Brain Neurochemicals in long COVID and ME/CFS: A Preliminary Study using MRI

Abstract:

Purpose: Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients experience multiple complex symptoms, potentially linked to imbalances in brain neurochemicals. This study aims to measure brain neurochemical levels in long COVID and ME/CFS patients as well as healthy controls to investigate associations with severity measures.

Methods: Magnetic resonance spectroscopy (MRS) data was acquired with a 3T Prisma MRI scanner. We measured absolute levels of brain neurochemicals in the posterior cingulate cortex in long COVID (n=17), ME/CFS (n=17), and healthy controls (n=10) using Osprey software. The statistical analyses were performed using SPSS version 29. Age and sex were included as nuisance covariates.

Results: Glutamate levels were significantly higher in long COVID (p=0.02) and ME/CFS (p=0.017) than in healthy controls. No significant difference was found between the two patient cohorts. Additionally, N-acetyl-aspartate levels were significantly higher in long COVID patients (p=0.012). Importantly, brain neurochemical levels were associated with self-reported severity measures in long COVID and ME/CFS.

Conclusion: Our study identified significantly elevated Glutamate and N-acetyl-aspartate levels in long COVID and ME/CFS patients compared with healthy controls. No significant differences in brain neurochemicals were observed between the two patient cohorts, suggesting a potential overlap in their underlying pathology. These findings suggest that imbalanced neurochemicals contribute to the complex symptoms experienced by long COVID and ME/CFS patients.

Source: Thapaliya K, Marshall-Gradisnik S, Eaton-Fitch N, Eftekhari Z, Inderyas M, Barnden L. Imbalanced Brain Neurochemicals in long COVID and ME/CFS: A Preliminary Study using MRI. Am J Med. 2024 Apr 6:S0002-9343(24)00216-X. doi: 10.1016/j.amjmed.2024.04.007. Epub ahead of print. PMID: 38588934. https://www.sciencedirect.com/science/article/pii/S000293432400216X (Full text)

Impaired Hand Grip Strength Correlates with Greater Disability and Symptom Severity in Post-COVID Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Post-COVID syndrome (PCS) encompasses a diverse array of symptoms persisting beyond 3 months after acute SARS-CoV-2 infection, with mental as well as physical fatigue being the most frequent manifestations.
Methods: In 144 female patients with PCS, hand grip strength (HGS) parameters were assessed as an objective measure of muscle fatigue, with 78 meeting the Canadian Consensus Criteria for postinfectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The severity of disability and key symptoms was evaluated using self-reported questionnaires.
Results: Patients with ME/CFS exhibited heightened overall symptom severity, including lower physical function (p < 0.001), a greater degree of disability (< 0.001), more severe fatigue (< 0.001), postexertional malaise (p < 0.001), and autonomic dysfunction (p = 0.004) compared to other patients with PCS. While HGS was impaired similarly in all patients with PCS and exhibited a significant correlation with physical function across the entire patient group, HGS of patients with ME/CFS uniquely demonstrated associations with key symptoms.
Conclusions: Thus, impaired HGS serves as an objective marker of physical function in patients with PCS. Only in patients meeting ME/CFS criteria is impaired HGS also associated with the severity of hallmark symptoms. This suggests a common mechanism for muscle fatigue and other symptoms in the ME/CFS subtype, distinct from that in other types of PCS.
Source: Paffrath A, Kim L, Kedor C, Stein E, Rust R, Freitag H, Hoppmann U, Hanitsch LG, Bellmann-Strobl J, Wittke K, et al. Impaired Hand Grip Strength Correlates with Greater Disability and Symptom Severity in Post-COVID Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical Medicine. 2024; 13(7):2153. https://doi.org/10.3390/jcm13072153 https://www.mdpi.com/2077-0383/13/7/2153

Reduced Cortical Thickness Correlates of Cognitive Dysfunction in Post-COVID-19 Condition: Insights from a Long-Term Follow-up

Abstract:

Background and purpose: There is a paucity of data on long-term neuroimaging findings from individuals who have developed the post-coronavirus 2019 (COVID-19) condition. Only 2 studies have investigated the correlations between cognitive assessment results and structural MR imaging in this population. This study aimed to elucidate the long-term cognitive outcomes of participants with the post-COVID-19 condition and to correlate these cognitive findings with structural MR imaging data in the post-COVID-19 condition.

Materials and methods: A cohort of 53 participants with the post-COVID-19 condition underwent 3T brain MR imaging with T1 and FLAIR sequences obtained a median of 1.8 years after Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. A comprehensive neuropsychological battery was used to assess several cognitive domains in the same individuals. Correlations between cognitive domains and whole-brain voxel-based morphometry were performed. Different ROIs from FreeSurfer were used to perform the same correlations with other neuroimaging features.

Results: According to the Frascati criteria, more than one-half of the participants had deficits in the attentional (55%, n = 29) and executive (59%, n = 31) domains, while 40% (n = 21) had impairment in the memory domain. Only 1 participant (1.89%) showed problems in the visuospatial and visuoconstructive domains. We observed that reduced cortical thickness in the left parahippocampal region (t(48) = 2.28, = .03) and the right caudal-middle-frontal region (t(48) = 2.20, = .03) was positively correlated with the memory domain.

Conclusions: Our findings suggest that cognitive impairment in individuals with the post-COVID-19 condition is associated with long-term alterations in the structure of the brain. These macrostructural changes may provide insight into the nature of cognitive symptoms.

Source: Dacosta-Aguayo R, Puig J, Lamonja-Vicente N, Carmona-Cervelló M, Biaani León-Gómez B, Monté-Rubio G, López-Linfante VM, Zamora-Putin V, Montero-Alia P, Chacon C, Bielsa J, Moreno-Gabriel E, Garcia-Sierra R, Pachón A, Costa A, Mataró M, Prado JG, Martinez-Cáceres E, Mateu L, Massanella M, Violán C, Torán-Monserrat P; Aliança ProHEpiC-19 Cognitiu (The APC Collaborative Group). Reduced Cortical Thickness Correlates of Cognitive Dysfunction in Post-COVID-19 Condition: Insights from a Long-Term Follow-up. AJNR Am J Neuroradiol. 2024 Apr 4. doi: 10.3174/ajnr.A8167. Epub ahead of print. PMID: 38575319. https://pubmed.ncbi.nlm.nih.gov/38575319/

Machine learning algorithms for detection of visuomotor neural control differences in individuals with PASC and ME

Abstract:

The COVID-19 pandemic has affected millions worldwide, giving rise to long-term symptoms known as post-acute sequelae of SARS-CoV-2 (PASC) infection, colloquially referred to as long COVID. With an increasing number of people experiencing these symptoms, early intervention is crucial. In this study, we introduce a novel method to detect the likelihood of PASC or Myalgic Encephalomyelitis (ME) using a wearable four-channel headband that collects Electroencephalogram (EEG) data. The raw EEG signals are processed using Continuous Wavelet Transform (CWT) to form a spectrogram-like matrix, which serves as input for various machine learning and deep learning models. We employ models such as CONVLSTM (Convolutional Long Short-Term Memory), CNN-LSTM, and Bi-LSTM (Bidirectional Long short-term memory). Additionally, we test the dataset on traditional machine learning models for comparative analysis.

Our results show that the best-performing model, CNN-LSTM, achieved an accuracy of 83%. In addition to the original spectrogram data, we generated synthetic spectrograms using Wasserstein Generative Adversarial Networks (WGANs) to augment our dataset. These synthetic spectrograms contributed to the training phase, addressing challenges such as limited data volume and patient privacy. Impressively, the model trained on synthetic data achieved an average accuracy of 93%, significantly outperforming the original model.

These results demonstrate the feasibility and effectiveness of our proposed method in detecting the effects of PASC and ME, paving the way for early identification and management of the condition. The proposed approach holds significant potential for various practical applications, particularly in the clinical domain. It can be utilized for evaluating the current condition of individuals with PASC or ME, and monitoring the recovery process of those with PASC, or the efficacy of any interventions in the PASC and ME populations. By implementing this technique, healthcare professionals can facilitate more effective management of chronic PASC or ME effects, ensuring timely intervention and improving the quality of life for those experiencing these conditions.

Source: Harit Ahuja, Smriti Badhwar, Heather Edgell, Lauren E. Sergio, Marin Litoiu. Machine learning algorithms for detection of visuomotor neural control differences in individuals with PASC and ME. Front. Hum. Neurosci. Sec. Brain-Computer Interfaces, Volume 18 – 2024 | doi: 10.3389/fnhum.2024.1359162 https://www.frontiersin.org/articles/10.3389/fnhum.2024.1359162/full (Full text)

Pituitary–Adrenal Axis and Peripheral Immune Cell Profile in Long COVID

Abstract:

In Long COVID, dysfunction in the pituitary–adrenal axis and alterations in immune cells and inflammatory status are warned against. We performed a prospective study in a cohort of 42 patients who suffered COVID-19 at least 6 months before attending the Long COVID unit at Althaia Hospital.
Based on Post-COVID Functional Status, 29 patients were diagnosed with Long COVID, while 13 were deemed as recovered. The hormones of the pituitary–adrenal axis, adrenocorticotropin stimulation test, and immune cell profiles and inflammatory markers were examined. Patients with Long COVID had significantly lower EuroQol and higher mMRC scores compared to the recovered individuals. Their symptoms included fatigue, myalgia, arthralgia, persistent coughing, a persistent sore throat, dyspnoea, a lack of concentration, and anxiety.
We observed the physiological levels of cortisol and adrenocorticotropin in individuals with or without Long COVID. The results of the adrenocorticotropin stimulation test were similar between both groups. The absolute number of neutrophils was lower in the Long COVID patients compared to recovered individuals (p < 0.05). The total count of B lymphocytes remained consistent, but Long COVID patients had a higher percentage of mature B cells compared to recovered participants (p < 0.05) and exhibited a higher percentage of circulating resident memory CD8+ T cells (p < 0.05) and Treg-expressing exonucleases (p < 0.05).
Our findings did not identify adrenal dysfunction related to Long COVID, nor an association between adrenal function and clinical symptoms. The data indicated a dysregulation in certain immune cells, pointing to immune activation. No overt hyperinflammation was observed in the Long COVID group.
Source: Alijotas-Reig J, Anunciacion-Llunell A, Esteve-Valverde E, Morales-Pérez S, Rivero-Santana S, Trapé J, González-García L, Ruiz D, Marques-Soares J, Miro-Mur F. Pituitary–Adrenal Axis and Peripheral Immune Cell Profile in Long COVID. Biomedicines. 2024; 12(3):581. https://doi.org/10.3390/biomedicines12030581 https://www.mdpi.com/2227-9059/12/3/581 (Full text)