How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS

Abstract:

We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states.

Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production.

These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS.

Source: Nacul L, O’Boyle S, Palla L, et al. How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS. Front Neurol. 2020;11:826. Published 2020 Aug 11. doi:10.3389/fneur.2020.00826 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431524/ (Full text)

Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients

Abstract:

Background: Lightheadedness, fatigue, weakness, heart palpitations, cognitive dysfunction, muscle pain, and exercise intolerance are some of the symptoms of orthostatic intolerance (OI). There is substantial comorbidity of OI in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome). The 10-minute NASA Lean Test (NLT) is a simple, point-of-care method that can aid ME/CFS diagnosis and guide management and treatment of OI. The objective of this study was to understand the hemodynamic changes that occur in ME/CFS patients during the 10-minute NLT.

Methods: A total of 150 ME/CFS patients and 75 age, gender and race matched healthy controls (HCs) were enrolled. We recruited 75 ME/CFS patients who had been sick for less than 4 years (< 4 ME/CFS) and 75 ME/CFS patients sick for more than 10 years (> 10 ME/CFS). The 10-minute NLT involves measurement of blood pressure and heart rate while resting supine and every minute for 10 min while standing with shoulder-blades on the wall for a relaxed stance. Spontaneously reported symptoms are recorded during the test. ANOVA and regression analysis were used to test for differences and relationships in hemodynamics, symptoms and upright activity between groups.

Results: At least 5 min of the 10-minute NLT were required to detect hemodynamic changes. The < 4 ME/CFS group had significantly higher heart rate and abnormally narrowed pulse pressure compared to > 10 ME/CFS and HCs. The < 4 ME/CFS group experienced significantly more OI symptoms compared to > 10 ME/CFS and HCs. The circulatory decompensation observed in the < 4 ME/CFS group was not related to age or medication use.

Conclusions: Circulatory decompensation characterized by increased heart rate and abnormally narrow pulse pressure was identified in a subgroup of ME/CFS patients who have been sick for < 4 years. This suggests inadequate ventricular filling from low venous pressure. The 10-minute NLT can be used to diagnose and treat the circulatory decompensation in this newly recognized subgroup of ME/CFS patients. The > 10 ME/CFS group had less pronounced hemodynamic changes during the NLT possibly from adaptation and compensation that occurs over time. The 10-minute NLT is a simple and clinically useful point-of-care method that can be used for early diagnosis of ME/CFS and help guide OI treatment.

Source: Lee J, Vernon SD, Jeys P, et al. Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients. J Transl Med. 2020;18(1):314. Published 2020 Aug 15. doi:10.1186/s12967-020-02481-y https://pubmed.ncbi.nlm.nih.gov/32799889/

Environmental, Neuro-immune, and Neuro-oxidative Stress Interactions in Chronic Fatigue Syndrome

Abstract:

Chronic fatigue syndrome/myalgic encephalomyelitis (CFS) is a complex, multisystem disease that is characterized by long-term fatigue, exhaustion, disabilities, pain, neurocognitive impairments, gastrointestinal symptoms, and post-exertional malaise, as well as lowered occupational, educational, and social functions. The clinical and biomarker diagnosis of this disorder is hampered by the lack of validated diagnostic criteria and laboratory tests with adequate figures of merit, although there are now many disease biomarkers indicating the pathophysiology of CFS.

Here, we review multiple factors, such as immunological and environmental factors, which are associated with CFS and evaluate current concepts on the involvement of immune and environmental factors in the pathophysiology of CFS. The most frequently reported immune dysregulations in CFS are modifications in immunoglobulin contents, changes in B and T cell phenotypes and cytokine profiles, and decreased cytotoxicity of natural killer cells. Some of these immune aberrations display a moderate diagnostic performance to externally validate the clinical diagnosis of CFS, including the expression of activation markers and protein kinase R (PKR) activity. Associated with the immune aberrations are activated nitro-oxidative pathways, which may explain the key symptoms of CFS.

This review shows that viral and bacterial infections, as well as nutritional deficiencies, may further aggravate the immune-oxidative pathophysiology of CFS. Targeted treatments with antioxidants and lipid replacement treatments may have some clinical efficacy in CFS. We conclude that complex interactions between immune and nitro-oxidative pathways, infectious agents, environmental factors, and nutritional deficiencies play a role in the pathophysiology of CFS.

Source: Bjørklund G, Dadar M, Pivina L, Doşa MD, Semenova Y, Maes M. Environmental, Neuro-immune, and Neuro-oxidative Stress Interactions in Chronic Fatigue Syndrome [published online ahead of print, 2020 Aug 6]. Mol Neurobiol. 2020;10.1007/s12035-020-01939-w. doi:10.1007/s12035-020-01939-w  https://pubmed.ncbi.nlm.nih.gov/32761353/

A systematic review of mitochondrial abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome/systemic exertion intolerance disease

Abstract:

Background: Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or Systemic Exertion Intolerance Disease (SEID) present with a constellation of symptoms including debilitating fatigue that is unrelieved by rest. The pathomechanisms underlying this illness are not fully understood and the search for a biomarker continues, mitochondrial aberrations have been suggested as a possible candidate. The aim of this systematic review is to collate and appraise current literature on mitochondrial changes in ME/CFS/SEID patients compared to healthy controls.

Methods: Embase, PubMed, Scopus and Medline (EBSCO host) were systematically searched for articles assessing mitochondrial changes in ME/CFS/SEID patients compared to healthy controls published between January 1995 and February 2020. The list of articles was further refined using specific inclusion and exclusion criteria. Quality and bias were measured using the Joanna Briggs Institute Critical Appraisal Checklist for Case Control Studies.

Results: Nineteen studies were included in this review. The included studies investigated mitochondrial structural and functional differences in ME/CFS/SEID patients compared with healthy controls. Outcomes addressed by the papers include changes in mitochondrial structure, deoxyribonucleic acid/ribonucleic acid, respiratory function, metabolites, and coenzymes.

Conclusion: Based on the included articles in the review it is difficult to establish the role of mitochondria in the pathomechanisms of ME/CFS/SEID due to inconsistencies across the studies. Future well-designed studies using the same ME/CFS/SEID diagnostic criteria and analysis methods are required to determine possible mitochondrial involvement in the pathomechanisms of ME/CFS/SEID.

Source: Holden S, Maksoud R, Eaton-Fitch N, Cabanas H, Staines D, Marshall-Gradisnik S. A systematic review of mitochondrial abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome/systemic exertion intolerance disease. J Transl Med. 2020;18(1):290. Published 2020 Jul 29. doi:10.1186/s12967-020-02452-3 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02452-3 (Full text)

DNA Methylation and BDNF Expression Account for Symptoms and Widespread Hyperalgesia in Patients With Chronic Fatigue Syndrome and Fibromyalgia

Abstract:

Background: Epigenetics of neurotrophic factors holds the potential to unravel the mechanisms underlying the pathophysiology of complex conditions such as chronic fatigue syndrome (CFS). This study explored the role of brain-derived neurotrophic factor (BDNF) genetics, epigenetics, and protein expression in patients with both CFS and comorbid fibromyalgia (CFS/FM).

Methods: A repeated-measures study in 54 participants (28 patients with CFS/FM and 26 matched healthy controls) was conducted. Participants underwent a comprehensive assessment, including questionnaires, sensory testing, and blood withdrawal. BDNF protein level was measured in serum (sBDNF) using ELISA, while polymorphism and DNA methylation were measured in blood, using pyrosequencing technology. To assess temporal stability of the measures, participants underwent the same assessment twice within four days.

Results: Repeated-measures mixed linear models were performed for between-group analysis. sBNDF was higher in patients with CFS/FM (F=15.703; mean difference: 3.31 ng/ml, 95% C.I. 1.65 to 4.96; p=.001), whereas BDNF DNA methylation was lower in Exon IX (F=9.312; mean difference -2.38%, C.I. -3.93 to -0.83; p=.003). BDNF DNA methylation was mediated by the Val66Met (rs6265) polymorphism. Lower methylation in the same region predicted higher sBDNF (F=4.910, t= -2.216, p=.029, 95% C.I. = -.712 to -.039) which in turn predicted participants’ symptoms (F=14.410, t= 3.796, 95% C.I.= 1.79 to 5.71, p=.001) and widespread hyperalgesia (F=4.147, t= 2.036, 95% C.I.= .01 to .08, p=.044).

Discussion: sBDNF is higher in patients with CFS/FM and BDNF methylation in exon IX accounts for regulating protein expression. Altered BDNF might represent a key mechanism explaining CFS/FM pathophysiology.

Source: Polli A, Ghosh M, Bakusic J, et al. DNA methylation and BDNF expression account for symptoms and widespread hyperalgesia in patients with Chronic Fatigue Syndrome and Fibromyalgia [published online ahead of print, 2020 Jun 20]. Arthritis Rheumatol. 2020;10.1002/art.41405. doi:10.1002/art.41405 https://pubmed.ncbi.nlm.nih.gov/32562379/

Mitochondria and Immunity in Chronic Fatigue Syndrome

Abstract:

It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities.

This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions.

Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.

Source: Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome [published online ahead of print, 2020 May 26]. Prog Neuropsychopharmacol Biol Psychiatry. 2020;109976. doi:10.1016/j.pnpbp.2020.109976 https://pubmed.ncbi.nlm.nih.gov/32470498/

Chronic Pain Syndromes and Their Laryngeal Manifestations

Abstract:

IMPORTANCE: Fibromyalgia syndrome (FMS), irritable bowel syndrome (IBS), and chronic fatigue syndrome (CFS) are traditionally considered as distinct entities grouped under chronic pain syndrome (CPS) of an unknown origin. However, these 3 disorders may exist on a spectrum with a shared pathophysiology.

OBJECTIVE: To investigate whether the clinical presentation of FMS, IBS, and CFS is similar in a population presenting with voice and laryngeal disorders.

DESIGN, SETTING, AND PARTICIPANTS: This case series was a retrospective review of the medical records and clinical notes of patients treated between January 1, 2016, and December 31, 2017, at the Johns Hopkins Voice Center in Baltimore, Maryland. Patients with at least 1 CPS of interest (FMS, IBS, or CFS) were included (n = 215), along with patients without such diagnoses (n = 4034). Diagnoses, demographic, and comorbidity data were reviewed. Diagnoses related to voice and laryngeal disorders were subdivided into 5 main categories (laryngeal pathology, functional voice disorders, airway problems, swallowing problems, and other diagnoses).

MAIN OUTCOMES AND MEASURES: Prevalence and odds ratios of 45 voice and laryngeal disorders were reviewed. Odds ratios (ORs) were calculated by comparing patients with CPS with control patients.

RESULTS: In total, 4249 individuals were identified; 215 (5.1%) had at least 1 CPS and 4034 (94.9%) were control participants. Patients with CPS were 3 times more likely to be women compared with the control group (173 of 215 [80.5%] vs 2318 of 4034 [57.5%]; OR, 3.156; 95% CI, 2.392-4.296), and the CPS group had a mean (SD) age of 57.80 (15.30) years compared with the mean (SD) age of 55.77 (16.97) years for the control group. Patients with CPS were more likely to present with functional voice disorders (OR, 1.812; 95% CI, 1.396-2.353) and less likely to present with laryngeal pathology (OR, 0.774; 95% CI, 0.610-0.982) or airway problems (OR, 0.474; 95% CI, 0.285-0.789).

CONCLUSIONS AND RELEVANCE: The voice and airway presentation of patients with FMS, IBS, and/or CFS appears to be indistinguishable from each other. This finding suggests that these 3 diseases share upper airway symptoms.

Source: Piersiala K, Akst LM, Hillel AT, Best SR. Chronic Pain Syndromes and Their Laryngeal Manifestations. JAMA Otolaryngol Head Neck Surg. 2020 Apr 30. doi: 10.1001/jamaoto.2020.0530. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/32352483

The effect of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) severity on cellular bioenergetic function

Abstract:

Myalgic encephalomyelitis/ Chronic fatigue syndrome (ME/CFS) has been associated with abnormalities in mitochondrial function. In this study we have analysed previous bioenergetics data in peripheral blood mononuclear cells (PBMCs) using new techniques in order to further elucidate differences between ME/CFS and healthy control cohorts. We stratified our ME/CFS cohort into two individual cohorts representing moderately and severely affected patients in order to determine if disease severity is associated with bioenergetic function in PBMCs.

Both ME/CFS cohorts showed reduced mitochondrial function when compared to a healthy control cohort. This shows that disease severity does not correlate with mitochondrial function and even those with a moderate form of the disease show evidence of mitochondrial dysfunction. Equations devised by another research group have enabled us to calculate ATP-linked respiration rates and glycolytic parameters. Parameters of glycolytic function were calculated by taking into account respiratory acidification.

This revealed severely affected ME/CFS patients to have higher rates of respiratory acidification and showed the importance of accounting for respiratory acidification when calculating parameters of glycolytic function. Analysis of previously published glycolysis data, after taking into account respiratory acidification, showed severely affected patients have reduced glycolysis compared to moderately affected patients and healthy controls. Rates of ATP-linked respiration were also calculated and shown to be lower in both ME/CFS cohorts.

This study shows that severely affected patients have mitochondrial and glycolytic impairments, which sets them apart from moderately affected patients who only have mitochondrial impairment. This may explain why these patients present with a more severe phenotype.

Source: Tomas C, Elson JL, Strassheim V, Newton JL, Walker M. The effect of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) severity on cellular bioenergetic function. PLoS One. 2020 Apr 10;15(4):e0231136. doi: 10.1371/journal.pone.0231136. eCollection 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231136 (Full study)

An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an enigmatic condition characterized by exacerbation of symptoms after exertion (post-exertional malaise or “PEM”), and by fatigue whose severity and associated requirement for rest are excessive and disproportionate to the fatigue-inducing activity. There is no definitive molecular marker or known underlying pathological mechanism for the condition.

Increasing evidence for aberrant energy metabolism suggests a role for mitochondrial dysfunction in ME/CFS. Our objective was therefore to measure mitochondrial function and cellular stress sensing in actively metabolizing patient blood cells.

We immortalized lymphoblasts isolated from 51 ME/CFS patients diagnosed according to the Canadian Consensus Criteria and an age- and gender-matched control group. Parameters of mitochondrial function and energy stress sensing were assessed by Seahorse extracellular flux analysis, proteomics, and an array of additional biochemical assays.

As a proportion of the basal oxygen consumption rate (OCR), the rate of ATP synthesis by Complex V was significantly reduced in ME/CFS lymphoblasts, while significant elevations were observed in Complex I OCR, maximum OCR, spare respiratory capacity, nonmitochondrial OCR and “proton leak” as a proportion of the basal OCR. This was accompanied by a reduction of mitochondrial membrane potential, chronically hyperactivated TOR Complex I stress signaling and upregulated expression of mitochondrial respiratory complexes, fatty acid transporters, and enzymes of the β-oxidation and TCA cycles. By contrast, mitochondrial mass and genome copy number, as well as glycolytic rates and steady state ATP levels were unchanged.

Our results suggest a model in which ME/CFS lymphoblasts have a Complex V defect accompanied by compensatory upregulation of their respiratory capacity that includes the mitochondrial respiratory complexes, membrane transporters and enzymes involved in fatty acid β-oxidation. This homeostatically returns ATP synthesis and steady state levels to “normal” in the resting cells, but may leave them unable to adequately respond to acute increases in energy demand as the relevant homeostatic pathways are already activated.

Source: Missailidis D, Annesley SJ, Allan CY, Sanislav O, Lidbury BA, Lewis DP, Fisher PR. An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients.Int J Mol Sci. 2020 Feb 6;21(3). pii: E1074. doi: 10.3390/ijms21031074.  https://www.mdpi.com/1422-0067/21/3/1074 (Full text)

Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: a quantitative, controlled study using Doppler echography

Abstract:

Objective: The underlying hypothesis in orthostatic intolerance (OI) syndromes is that symptoms are associated with cerebral blood flow (CBF) reduction. Indirect CBF measurements (transcranial Doppler flow velocities), provide inconsistent support of this hypothesis. The aim of the study was to measure CBF during a 30 min head-up tilt test (HUT), using Doppler flow imaging of carotid and vertebral arteries, in individuals with chronic fatigue syndrome/myalgic encephalomyelitis (ME/CFS), a condition with a high prevalence of OI.

Methods: 429 ME/CFS patients were studied: 247 had a normal heart rate (HR) and blood pressure (BP) response to HUT, 62 had delayed orthostatic hypotension (dOH), and 120 had postural orthostatic tachycardia syndrome (POTS). We also studied 44 healthy controls (HC). CBF measurements were made at mid-tilt and end-tilt. Before mid-tilt, we administered a verbal questionnaire to ascertain for 15 OI symptoms.

Results: End-tilt CBF reduction was 7% in HC versus 26% in the overall ME/CFS group, 24% in patients with a normal HR/BP response, 28% in those with dOH, and 29% in POTS patients (all P<.0005). Using a lower limit of normal of 2SD of CBF reduction in HC (13% reduction), 82% of patients with normal HR/BP response, 98% with dOH and 100% with POTS showed an abnormal CBF reduction. There was a linear correlation of summed OI symptoms with the degree of CBF reduction at mid-tilt (P<.0005).

Conclusions: During HUT, extracranial Doppler measurements demonstrate that CBF is reduced in ME/CFS patients with POTS, dOH, and even in those without HR/BP abnormalities.

Significance: This study shows that orthostatic intolerance symptoms are related to CBF reduction, and that the majority of ME/CFS patients (90%) show an abnormal cerebral flow reduction during orthostatic stress testing. This may have implications for the diagnosis and treatment of ME/CFS patients.

Source: C. (Linda) M.C.van Campen, Freek W.A. Verheugt, Peter C. Rowe, Frans C.Visser. Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: a quantitative, controlled study using Doppler echography. Clinical Neurophysiology Practice. Available online 8 February 2020. https://doi.org/10.1016/j.cnp.2020.01.003 https://www.sciencedirect.com/science/article/pii/S2467981X20300044 (Full text)