Limbic Perfusion Is Reduced in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an illness characterized by a diverse range of debilitating symptoms including autonomic, immunologic, and cognitive dysfunction. Although neurological and cognitive aberrations have been consistently reported, relatively little is known regarding the regional cerebral blood flow (rCBF) in ME/CFS.

In this study, we studied a cohort of 31 ME/CSF patients (average age: 42.8 ± 13.5 years) and 48 healthy controls (average age: 42.9 ± 12.0 years) using the pseudo-continuous arterial spin labeling (PCASL) technique on a whole-body clinical 3T MRI scanner. Besides routine clinical MRI, the protocol included a session of over 8 min-long rCBF measurement. The differences in the rCBF between the ME/CSF patients and healthy controls were statistically assessed with voxel-wise and AAL ROI-based two-sample t-tests. Linear regression analysis was also performed on the rCBF data by using the symptom severity score as the main regressor.

In comparison with the healthy controls, the patient group showed significant hypoperfusion (uncorrected voxel wise p ≤ 0.001, FWE p ≤ 0.01) in several brain regions of the limbic system, including the anterior cingulate cortex, putamen, pallidum, and anterior ventral insular area. For the ME/CFS patients, the overall symptom severity score at rest was significantly associated with a reduced rCBF in the anterior cingulate cortex. The results of this study show that brain blood flow abnormalities in the limbic system may contribute to ME/CFS pathogenesis.

Source: Li X, Julin P, Li TQ. Limbic Perfusion Is Reduced in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Tomography. 2021 Nov 1;7(4):675-687. doi: 10.3390/tomography7040056. PMID: 34842817.  https://www.mdpi.com/2379-139X/7/4/56 (Full text)

No Signs of Neuroinflammation in Women With Chronic Fatigue Syndrome or Q Fever Fatigue Syndrome Using the TSPO Ligand [ 11 C]-PK11195

Abstract:

Background and objectives: The pathophysiology of chronic fatigue syndrome (CFS) and Q fever fatigue syndrome (QFS) remains elusive. Recent data suggest a role for neuroinflammation as defined by increased expression of translocator protein (TSPO). In the present study, we investigated whether there are signs of neuroinflammation in female patients with CFS and QFS compared with healthy women, using PET with the TSPO ligand 11C-(R)-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide ([11C]-PK11195).

Methods: The study population consisted of patients with CFS (n = 9), patients with QFS (n = 10), and healthy subjects (HSs) (n = 9). All subjects were women, matched for age (±5 years) and neighborhood, aged between 18 and 59 years, who did not use any medication other than paracetamol or oral contraceptives, and were not vaccinated in the last 6 months. None of the subjects reported substance abuse in the past 3 months or reported signs of underlying psychiatric disease on the Mini-International Neuropsychiatric Interview. All subjects underwent a [11C]-PK11195 PET scan, and the [11C]-PK11195 binding potential (BPND) was calculated.

Results: No statistically significant differences in BPND were found for patients with CFS or patients with QFS compared with HSs. BPND of [11C]-PK11195 correlated with symptom severity scores in patients with QFS, but a negative correlation was found in patients with CFS.

Discussion: In contrast to what was previously reported for CFS, we found no significant difference in BPND of [11C]-PK11195 when comparing patients with CFS or QFS with healthy neighborhood controls. In this small series, we were unable to find signs of neuroinflammation in patients with CFS and QFS.

Source: Raijmakers R, Roerink M, Keijmel S, Joosten L, Netea M, van der Meer J, Knoop H, Klein H, Bleeker-Rovers C, Doorduin J. No Signs of Neuroinflammation in Women With Chronic Fatigue Syndrome or Q Fever Fatigue Syndrome Using the TSPO Ligand [11C]-PK11195. Neurol Neuroimmunol Neuroinflamm. 2021 Nov 23;9(1):e1113. doi: 10.1212/NXI.0000000000001113. PMID: 34815320. https://pubmed.ncbi.nlm.nih.gov/34815320/

The Emerging Role of Gut Microbiota in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Current Evidence and Potential Therapeutic Applications

Abstract:

The well-known symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are chronic pain, cognitive dysfunction, post-exertional malaise and severe fatigue. Another class of symptoms commonly reported in the context of ME/CFS are gastrointestinal (GI) problems. These may occur due to comorbidities such as Crohn’s disease or irritable bowel syndrome (IBS), or as a symptom of ME/CFS itself due to an interruption of the complex interplay between the gut microbiota (GM) and the host GI tract. An altered composition and overall decrease in diversity of GM has been observed in ME/CFS cases compared to controls. In this review, we reflect on genetics, infections, and other influences that may factor into the alterations seen in the GM of ME/CFS individuals, we discuss consequences arising from these changes, and we contemplate the therapeutic potential of treating the gut to alleviate ME/CFS symptoms holistically.

Source: Varesi A, Deumer US, Ananth S, Ricevuti G. The Emerging Role of Gut Microbiota in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Current Evidence and Potential Therapeutic Applications. J Clin Med. 2021 Oct 29;10(21):5077. doi: 10.3390/jcm10215077. PMID: 34768601. https://pubmed.ncbi.nlm.nih.gov/34768601/

Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms

Abstract:

Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex, debilitating disease of unknown cause for which there is no specific therapy. Patients suffering from ME/CFS commonly experience persistent fatigue, post-exertional malaise, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever and irritable bowel syndrome (IBS). Recent evidence implicates gut microbiome dysbiosis in ME/CFS. However, most prior studies are limited by small sample size, differences in clinical criteria used to define cases, limited geographic sampling, reliance on bacterial culture or 16S rRNA gene sequencing, or insufficient consideration of confounding factors that may influence microbiome composition. In the present study, we evaluated the fecal microbiome in the largest prospective, case-control study to date (n=106 cases, n=91 healthy controls), involving subjects from geographically diverse communities across the United States.

Results Using shotgun metagenomics and qPCR and rigorous statistical analyses that controlled for important covariates, we identified decreased relative abundance and quantity of FaecalibacteriumRoseburia, and Eubacterium species and increased bacterial load in feces of subjects with ME/CFS. These bacterial taxa play an important role in the production of butyrate, a multifunctional bacterial metabolite that promotes human health by regulating energy metabolism, inflammation, and intestinal barrier function. Functional metagenomic and qPCR analyses were consistent with a deficient microbial capacity to produce butyrate along the acetyl-CoA pathway in ME/CFS. Metabolomic analyses of short-chain fatty acids (SCFAs) confirmed that fecal butyrate concentration was significantly reduced in ME/CFS. Further, we found that the degree of deficiency in butyrate-producing bacteria correlated with fatigue symptom severity among ME/CFS subjects. Finally, we provide evidence that IBS comorbidity is an important covariate to consider in studies investigating the microbiome of ME/CFS subjects, as differences in microbiota alpha diversity, some bacterial taxa, and propionate were uniquely associated with self-reported IBS diagnosis.

Conclusions Our findings indicate that there is a core deficit in the butyrate-producing capacity of the gut microbiome in ME/CFS subjects compared to healthy controls. The relationships we observed among symptom severity and these gut microbiome disturbances may be suggestive of a pathomechanistic linkage, however, additional research is warranted to establish any causal relationship. These findings provide support for clinical trials that explore the utility of dietary, probiotic and prebiotic interventions to boost colonic butyrate production in ME/CFS.

Source: Cheng Guo, Xiaoyu Che, Thomas Briese, Orchid Allicock, Rachel A. Yates, Aaron Cheng, Amit Ranjan, Dana March, Mady Hornig, Anthony L. Komaroff, Susan Levine, Lucinda Bateman, Suzanne D. Vernon, Nancy G. Klimas, Jose G. Montoya, Daniel L. Peterson, W. Ian Lipkin, Brent L. Williams. Deficient butyrate-producing capacity in the gut microbiome of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients is associated with fatigue symptoms. medRxiv 2021.10.27.21265575; doi: https://doi.org/10.1101/2021.10.27.21265575 https://www.medrxiv.org/content/10.1101/2021.10.27.21265575v1?fbclid=IwAR16pb6by73xZx5lZM3j-5dOc_YT2JapILaRS-DcUZj5EHZxnoSa2fAAIuE (Full text available to download)

Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review

Abstract:

The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS.

In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.

Source: Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. Int J Environ Res Public Health. 2021 Oct 12;18(20):10708. doi: 10.3390/ijerph182010708. PMID: 34682454; PMCID: PMC8535478. https://pubmed.ncbi.nlm.nih.gov/34682454/ (Full text)

Cerebral blood flow remains reduced after tilt testing in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

Objective: Orthostatic symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may be caused by an abnormal reduction in cerebral blood flow. An abnormal cerebral blood flow reduction was shown in previous studies, without information on the recovery pace of cerebral blood flow. This study examined the prevalence and risk factors for delayed recovery of cerebral blood flow in ME/CFS patients.

Methods: 60 ME/CFS adults were studied: 30 patients had a normal heart rate and blood pressure response during the tilt test, 4 developed delayed orthostatic hypotension, and 26 developed postural orthostatic tachycardia syndrome (POTS) during the tilt. Cerebral blood flow measurements, using extracranial Doppler, were made in the supine position pre-tilt, at end-tilt, and in the supine position at 5 min post-tilt. Also, cardiac index measurements were performed, using suprasternal Doppler imaging, as well as end-tidal PCO2 measurements. The change in cerebral blood flow from supine to end-tilt was expressed as a percent reduction with mean and (SD). Disease severity was scored as mild (approximately 50% reduction in activity), moderate (mostly housebound), or severe (mostly bedbound).

Results: End-tilt cerebral blood flow reduction was -29 (6)%, improving to -16 (7)% at post-tilt. No differences in either end-tilt or post-tilt measurements were found when patients with a normal heart rate and blood pressure were compared to those with POTS, or between patients with normocapnia (end-tidal PCO2 ≥ 30 mmHg) versus hypocapnia (end-tidal PCO2 < 30 mmHg) at end-tilt. A significant difference was found in the degree of abnormal cerebral blood flow reduction in the supine post-test in mild, moderate, and severe ME/CFS: mild: cerebral blood flow: -7 (2)%, moderate: -16 (3)%, and severe :-25 (4)% (p all < 0.0001). Cardiac index declined significantly during the tilt test in all 3 severity groups, with no significant differences between the groups. In the supine post-test cardiac index returned to normal in all patients.

Conclusions: During tilt testing, extracranial Doppler measurements show that cerebral blood flow is reduced in ME/CFS patients and recovery to normal supine values is incomplete, despite cardiac index returning to pre-tilt values. The delayed recovery of cerebral blood flow was independent of the hemodynamic findings of the tilt test (normal heart rate and blood pressure response, POTS, or delayed orthostatic hypotension), or the presence/absence of hypocapnia, and was only related to clinical ME/CFS severity grading. We observed a significantly slower recovery in cerebral blood flow in the most severely ill ME/CFS patients.

Significance: The finding that orthostatic stress elicits a post-stress cerebral blood flow reduction and that disease severity greatly influences the cerebral blood flow reduction may have implications on the advice of energy management after a stressor and on the advice of lying down after a stressor in these ME/CFS patients.

Source: van Campen CLMC, Rowe PC, Visser FC. Cerebral blood flow remains reduced after tilt testing in myalgic encephalomyelitis/chronic fatigue syndrome patients. Clin Neurophysiol Pract. 2021 Sep 23;6:245-255. doi: 10.1016/j.cnp.2021.09.001. PMID: 34667909; PMCID: PMC8505270. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505270/  (Full text)

Neurochemical abnormalities in chronic fatigue syndrome: a pilot magnetic resonance spectroscopy study at 7 Tesla

Abstract:

Rationale: Chronic fatigue syndrome (CFS) is a common and burdensome illness with a poorly understood pathophysiology, though many of the characteristic symptoms are likely to be of brain origin. The use of high-field proton magnetic resonance spectroscopy (MRS) enables the detection of a range of brain neurochemicals relevant to aetiological processes that have been linked to CFS, for example, oxidative stress and mitochondrial dysfunction.

Methods: We studied 22 CFS patients and 13 healthy controls who underwent MRS scanning at 7 T with a voxel placed in the anterior cingulate cortex. Neurometabolite concentrations were calculated using the unsuppressed water signal as a reference.

Results: Compared to controls, CFS patients had lowered levels of glutathione, total creatine and myo-inositol in anterior cingulate cortex. However, when using N-acetylaspartate as a reference metabolite, only myo-inositol levels continued to be significantly lower in CFS participants.

Conclusions: The changes in glutathione and creatine are consistent with the presence of oxidative and energetic stress in CFS patients and are potentially remediable by nutritional intervention. A reduction in myo-inositol would be consistent with glial dysfunction. However, the relationship of the neurochemical abnormalities to the causation of CFS remains to be established, and the current findings require prospective replication in a larger sample.

Source: Godlewska BR, Williams S, Emir UE, Chen C, Sharpley AL, Goncalves AJ, Andersson MI, Clarke W, Angus B, Cowen PJ. Neurochemical abnormalities in chronic fatigue syndrome: a pilot magnetic resonance spectroscopy study at 7 Tesla. Psychopharmacology (Berl). 2021 Oct 5. doi: 10.1007/s00213-021-05986-6. Epub ahead of print. PMID: 34609538. https://pubmed.ncbi.nlm.nih.gov/34609538/

ME/CFS may be linked to failure in energy supply to the cells

By Elise Kjørstad

Researchers at the University of Bergen and Haukeland University Hospital were part of a research team for a new study that found differences in blood samples between ME/CFS patients and healthy people.

Patients with myalgic encephalomyelitis/chronic fatigue syndrome, or ME/CFS, had different levels of some substances that affect energy metabolism in the cells.

“What we think might be an explanation is that restricted blood flow during activity means the cells are receiving too little oxygen, and this leaves metabolic traces over time,” says Karl Johan Tronstad.

In the new study, the researchers performed an analysis of metabolites and other substances in blood samples from ME/CFS patients. Metabolites are metabolic products that are created when the cells convert different substances in the body.

The researchers analysed blood samples from 83 individuals with ME/CFS and 35 healthy controls.

The researchers measured about 1700 substances in the blood samples they took.

In the ME/CFS patients, they found an altered level of over 300 substances. Many of them involved the conversion of amino acids, which build up proteins, and lipids (fats).

Read the rest of this article HERE.

 

 

Redox Imbalance: A Core Feature of ME/CFS and Acute COVID-19

By Dr. Anthony Komaroff

ME/CFS is defined exclusively by symptoms—subjective experiences that are hard to verify by objective testing. For that reason, since interest in ME/CFS began to grow in the 1980s, scientists have been looking for evidence of underlying objective abnormalities that might explain the symptoms.

A recent review, published August 24, 2021, in the Proceedings of the National Academy of Sciences USA, summarizes in detail the evidence demonstrating one of the several objective abnormalities in people with ME/CFS and acute COVID-19: redox imbalance.1 It speculates that redox imbalance may also be present in post-acute COVID-19 syndrome, or “long COVID-19”, although this remains to be studied.

Redox imbalance occurs when the molecules that are oxidants (particularly “free radicals” or reactive oxygen species) exceed the number of molecules that are antioxidants. Essentially, redox imbalance is the same as the more familiar term of “oxidative stress”.

Read the rest of this article HERE.

Chronic Fatigue Syndrome and Cardiovascular Disease: JACC State-of-the-Art Review

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a medically unexplained illness characterized by severe fatigue limiting normal daily activities for at least 6 months accompanied by problems with unrefreshing sleep, exacerbation of symptoms following physical or mental efforts (postexertional malaise [PEM]), and either cognitive reports or physiological evidence of orthostatic intolerance in the form of either orthostatic tachycardia and/or hypocapnia.

Although rarely considered to have cardiac dysfunction, ME/CFS patients frequently have reduced stroke volume with a significant inverse relation between cardiac output and PEM severity. Magnetic resonance imaging of ME/CFS patients compared with normal control subjects found significantly reduced stroke, end-systolic, and end-diastolic volumes together with reduced end-diastolic wall mass. Another cardiovascular abnormality is reduced nocturnal blood pressure assessed by 24-hour monitoring. Autonomic dysfunction is also frequently observed with postural orthostatic tachycardia and/or hypocapnia. Two consecutive cardiopulmonary stress tests may provide metabolic data substantiating PEM.

Source: Natelson BH, Brunjes DL, Mancini D. Chronic Fatigue Syndrome and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021 Sep 7;78(10):1056-1067. doi: 10.1016/j.jacc.2021.06.045. PMID: 34474739. https://pubmed.ncbi.nlm.nih.gov/34474739/