Muscular metabolic plasticity in 3D in vitro models against systemic stress factors in ME/CFS and long COVID-19

Abstract:

Myalgic encephalomyelities/ chronic fatigue syndrome and long COVID-19 are clinically challenging, multi-symptomatic conditions with multiple overlapping symptoms. Unfortunately, contemporary research is directly being done on patients which risks exacerbating their symptoms. Using our 3-D in vitro skeletal muscle tissues we have mapped the progression of functional, physiological, and metabolic adaptations of the tissues in response to patient sera over time.

During short exposure we treated the tissues for 48 hours with patient sera. The contractile profiles of these tissues were severely compromised. Transcriptomic analyses of these short exposure samples showed an absence of significant differentially expressed genes between ME/CFS and LC-19. The analyses revealed an upregulation of glycolytic enzymes especially of PDK4, suggesting a switch away from Oxidative Phosphorylation as well as a decline in DRP1, involved in mitochondrial fission.

Subsequent structural analyses confirmed hypertrophy in myotubes and hyperfused mitochondrial networks. Mitochondrial oxygen consumption capacity, evaluated through the MitoStress test, was also elevated, as was the non-mitochondrial respiration confirming the shift to glycolysis.

Interestingly, at short exposures of 48 hours, the muscle tissues appeared to be adapting to the stress factors by upregulating glycolysis and increasing the muscular metabolic volume. Prolonging the exposure to 96 and 144 hours induced high fatiguability, and fragility in tissues. The mitochondria, at longer exposures, appeared to be fragmented and assumed a toroidal conformation indicating a change in mitochondrial membrane potential.

We hypothesize that the disease progresses through an intermediary stress-induced hypermetabolic state, ultimately leading to severe deterioration of muscle function. This is the first account of research that proposes acquired metabolic plasticity in 3D skeletal muscles exposed to ME/CFS and Long COVID-19 sera.

Source: S. Mughal, F. Andújar-Sánchez, M. Sabater-Arcis, J. Fernández-Costa, J. Ramón-Azcón. 571P Muscular metabolic plasticity in 3D in vitro models against systemic stress factors in ME/CFS and long COVID-19. Neuromuscular Disorders, Volume 43, Supplement 1, October 2024, 104441.162. https://www.sciencedirect.com/science/article/abs/pii/S0960896624003353

Adrenergic dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: A systematic review and meta-analysis

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are comorbid disorders with overlapping symptoms. Research highlights autonomic dysfunction compared to healthy individuals, particularly involving the sympathetic branch. While past reviews focused on neurophysiological assessments, this systematic review summarises biological adrenergic markers, offering deeper insights into the observed sympathetic dysfunction in ME/CFS and FM aiming to identify targetable pathophysiological mechanisms.

Methods: A systematic search was performed on PubMed, Web of Science, Embase and Scopus. Studies investigating peripheral biological markers of adrenergic function in patients with ME/CFS or FM compared to healthy controls at baseline were included. Meta-analyses were performed using R statistical software.

Results: This meta-analysis of 37 studies, encompassing 543 ME/CFS patients and 651 FM patients, compared with 747 and 447 healthy controls, respectively, revealed elevated adrenaline (SMD = .49 [.31-.67]; Z = 5.29, p < .01) and β1 adrenergic receptor expression (SMD = .79 [.06-1.52]; Z = 2.13; p = .03) in blood of ME/CFS patients at rest. Additionally, patients with ME/CFS had a greater increase in the expression of α2A adrenergic receptor (AR, SMD = .57 [.18-.97]; Z = 2.85, p < .01), β2 AR (SMD = .41 [.02-.81]; Z = 2.04; p = .04) and COMT (SMD = .42 [.03-.81]; Z = 2.11; p = .03) after exercise and an increased response of noradrenaline to an orthostatic test (SMD = .11 [-.47 to -.70]; Z = 2.10; p = .04), both found in blood. FM patients showed no significant differences at baseline but exhibited a diminished adrenaline response to exercise (SMD = -.79 [-1.27 to -.30]; Z = -3.14; p < .01).

Conclusion: This systematic review and meta-analysis revealed adrenergic dysfunction mainly in patients with ME/CFS. Higher baseline adrenaline levels and atypical responses to exercise in ME/CFS indicate that sympathetic dysfunction, underscored by adrenergic abnormalities, is more involved in the pathophysiology of ME/CFS rather than FM.

Source: Hendrix J, Fanning L, Wyns A, Ahmed I, Patil MS, Richter E, Van Campenhout J, Ickmans K, Mertens R, Nijs J, Godderis L, Polli A. Adrenergic dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: A systematic review and meta-analysis. Eur J Clin Invest. 2024 Sep 25:e14318. doi: 10.1111/eci.14318. Epub ahead of print. PMID: 39319943. https://pubmed.ncbi.nlm.nih.gov/39319943/

Sleep and circadian rhythm alterations in myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID fatigue syndrome and its association with cardiovascular risk factors: A prospective cohort study

Abstract:

This study aimed to investigate circadian rhythm manifestations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients (including a subpopulation of long-COVID patients) and matched healthy controls while also exploring their association with cardiovascular health variables.

Thirty-one ME/CFS patients (75% females), 23 individuals diagnosed with post-COVID ME/CFS (56% females) and 31 matched healthy controls (68% females) were enrolled in this study. Demographic and clinical characteristics were assessed using validated self-reported outcome measures. Actigraphy data, collected over one week, were used to analyze the 24-h profiles of wrist temperature, motor activity, and sleep circadian variables in the study participants. Associations between lipid profile with endothelial dysfunction biomarkers (such as endothelin-1, ICAM-1 and VCAM-1) and with sleep and circadian variables were also studied.

No differences were found in these variables between the two group of patients. Patients showed lower activity and worse sleep quality than matched healthy controls, together with a worse lipid profile than controls, that was associated with disturbances in the circadian temperature rhythm. ICAM-1 levels were associated with plasma lipids in healthy controls, but not in patients, who showed higher levels of endothelin-1 and VCAM-1.

These findings suggest that lipid profiles in ME/CFS are linked to disrupted circadian rhythms and sleep patterns, likely due to endothelial dysfunction. Furthermore, they highlight the intricate relationship between sleep, circadian rhythms, and cardiovascular health in this condition.

Source: Zerón-Rugerio MF, Zaragozá MC, Domingo JC, Sanmartín-Sentañes R, Alegre-Martin J, Castro-Marrero J, Cambras T. Sleep and circadian rhythm alterations in myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID fatigue syndrome and its association with cardiovascular risk factors: A prospective cohort study. Chronobiol Int. 2024 Jul 22:1-12. doi: 10.1080/07420528.2024.2380020. Epub ahead of print. PMID: 39037125. https://pubmed.ncbi.nlm.nih.gov/39037125/

Lower hair cortisol concentration in adolescent and young adult patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Q-Fever Fatigue Syndrome compared to controls

Abstract:

Background: In patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), momentary cortisol concentrations in blood, urine, and saliva are lower compared to healthy controls. Long-term cortisol concentration can be assessed through hair, but it is unclear whether these concentrations are also lower. Additionally, it is unknown if lower cortisol extends to other patients suffering from persistent fatigue and how hair cortisol concentration (HCC) relates to fatigue levels. Therefore, this study examines HCC in fatigued patients with ME/CFS, Q fever Fatigue Syndrome (QFS), Post-COVID-19 condition (PCC), and Juvenile Idiopathic Arthritis (JIA).

Methods: Adolescent and young adult patients with ME/CFS (n=12), QFS (n=20), PCC (n=8), JIA (n=19), and controls (n=57) were included. Patients participated in a randomized cross-over trial (RCT) targeting fatigue through lifestyle and dietary self-management strategies. HCC was measured pre-post RCT in patients and once in controls, quantified using a LC-MS/MS-based method. Fatigue severity was measured with the Checklist Individual Strength-8. HCC was compared between groups with ANOVAs. Relations between HCC, fatigue severity, and other variables were investigated using linear regression analyses.

Results: The ME/CFS (p=.009) and QFS (p=.047) groups had lower HCC compared to controls. Overall, HCC was negatively associated with the presence of symptoms related to chronic fatigue syndromes (e.g., sleeping issues, often feeling tired, trouble thinking clearly; β=-0.018, p=.035), except in the QFS group (β=.063, p<.001). Baseline HCC did not predict fatigue improvement during the RCT (p=.449), and HCC increased during the trial (Mdif=.076, p=.021) regardless of clinically relevant fatigue improvement (p=.658).

Conclusion: Lower cortisol concentration can also be observed in the long-term. Lower HCC is not limited to ME/CFS, as it was also observed in QFS. The role of cortisol may differ between these diagnoses and appears to be unrelated to fatigue levels.

Source: Vroegindeweij A, Eijkelkamp N, van den Berg SAA, van de Putte EM, Wulffraat NM, Swart JF, Nijhof SL. Lower hair cortisol concentration in adolescent and young adult patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Q-Fever Fatigue Syndrome compared to controls. Psychoneuroendocrinology. 2024 Jun 28;168:107117. doi: 10.1016/j.psyneuen.2024.107117. Epub ahead of print. PMID: 38986244. https://pubmed.ncbi.nlm.nih.gov/38986244/

Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease with a broad overlap of symptomatology with Post-COVID Syndrome (PCS). Despite the severity of symptoms and various neurological, cardiovascular, microvascular, and skeletal muscular findings, no biomarkers have been identified.

The Transient receptor potential melastatin 3 (TRPM3) channel, involved in pain transduction, thermosensation, transmitter and neuropeptide release, mechanoregulation, vasorelaxation, and immune defense, shows altered function in ME/CFS. Dysfunction of TRPM3 in natural killer (NK) cells, characterized by reduced calcium flux, has been observed in ME/CFS and PCS patients, suggesting a role in ineffective pathogen clearance and potential virus persistence and autoimmunity development.

TRPM3 dysfunction in NK cells can be improved by naltrexone in vitro and ex vivo, which may explain the moderate clinical efficacy of low-dose naltrexone (LDN) treatment. We propose that TRPM3 dysfunction may have a broader involvement in ME/CFS pathophysiology, affecting other organs. This paper discusses TRPM3’s expression in various organs and its potential impact on ME/CFS symptoms, with a focus on small nerve fibers and the brain, where TRPM3 is involved in presynaptic GABA release.

Source: Löhn M, Wirth KJ. Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone. J Transl Med. 2024 Jul 5;22(1):630. doi: 10.1186/s12967-024-05412-3. PMID: 38970055; PMCID: PMC11227206. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227206/ (Full Text)

Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations

Abstract:

Background: Post-exertional malaise (PEM), the hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), represents a constellation of abnormal responses to physical, cognitive, and/or emotional exertion including profound fatigue, cognitive dysfunction, and exertion intolerance, among numerous other maladies. Two sequential cardiopulmonary exercise tests (2-d CPET) provide objective evidence of abnormal responses to exertion in ME/CFS but validated only in studies with small sample sizes. Further, translation of results to impairment status and approaches to symptom reduction are lacking.

Methods: Participants with ME/CFS (Canadian Criteria; n = 84) and sedentary controls (CTL; n = 71) completed two CPETs on a cycle ergometer separated by 24 h. Two-way repeated measures ANOVA compared CPET measures at rest, ventilatory/anaerobic threshold (VAT), and peak effort between phenotypes and CPETs. Intraclass correlations described stability of CPET measures across tests, and relevant objective CPET data indicated impairment status. A subset of case–control pairs (n = 55) matched for aerobic capacity, age, and sex, were also analyzed.

Results: Unlike CTL, ME/CFS failed to reproduce CPET-1 measures during CPET-2 with significant declines at peak exertion in work, exercise time, e, O2CO2 T, HR, O2pulse, DBP, and RPP. Likewise, CPET-2 declines were observed at VAT for e/CO2, PetCO2, O2pulse, work, O2 and SBP. Perception of effort (RPE) exceeded maximum effort criteria for ME/CFS and CTL on both CPETs. Results were similar in matched pairs. Intraclass correlations revealed greater stability in CPET variables across test days in CTL compared to ME/CFS owing to CPET-2 declines in ME/CFS. Lastly, CPET-2 data signaled more severe impairment status for ME/CFS compared to CPET-1.

Conclusions: Presently, this is the largest 2-d CPET study of ME/CFS to substantiate impaired recovery in ME/CFS following an exertional stressor. Abnormal post-exertional CPET responses persisted compared to CTL matched for aerobic capacity, indicating that fitness level does not predispose to exertion intolerance in ME/CFS. Moreover, contributions to exertion intolerance in ME/CFS by disrupted cardiac, pulmonary, and metabolic factors implicates autonomic nervous system dysregulation of blood flow and oxygen delivery for energy metabolism. The observable declines in post-exertional energy metabolism translate notably to a worsening of impairment status. Treatment considerations to address tangible reductions in physiological function are proffered.

Trial registration number: ClinicalTrials.gov, retrospectively registered, ID# NCT04026425, date of registration: 2019-07-17.

Source: Keller, B., Receno, C.N., Franconi, C.J. et al. Cardiopulmonary and metabolic responses during a 2-day CPET in myalgic encephalomyelitis/chronic fatigue syndrome: translating reduced oxygen consumption to impairment status to treatment considerations. J Transl Med 22, 627 (2024). https://doi.org/10.1186/s12967-024-05410-5 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-024-05410-5#Abs1 (Full text)

 

Flow Clotometry: Measuring Amyloid Microclots in ME/CFS, Long COVID, and Healthy Samples with Imaging Flow Cytometry

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has received more attention since the characterization of Long COVID (LC), a condition somewhat similar in symptom presentation and, to some extent, pathophysiological mechanisms. A prominent feature of LC pathology is amyloid, fibrinolysis-resistant fibrin(ogen) fragments, termed microclots. Despite prior identification of microclots in ME/CFS, quantitative analysis has remained challenging due to the reliance on representative micrographs and software processing for estimations.

Addressing this gap, the present study uses a cell-free imaging flow cytometry approach, optimized for the quantitative analysis of Thioflavin T-stained microclots, to precisely measure microclot concentration and size distribution across ME/CFS, LC, and healthy cohorts. We refer to our cell-free flow cytometry technique for detecting microclots as ‘flow clotometry’.

We demonstrate significant microclot prevalence in ME/CFS and LC, with LC patients exhibiting the highest concentration (18- and 3-fold greater than the healthy and ME/CFS groups, respectively). This finding underscores a common pathology across both conditions, emphasizing a dysregulated coagulation system. Moreover, relating to microclot size distribution, the ME/CFS group exhibited a significantly higher prevalence across all area ranges when compared to the controls, but demonstrated a significant difference for only a single area range when compared to the LC group.

This suggests a partially overlapping microclot profile in ME/CFS relative to LC, despite the overall higher concentration in the latter. The present study paves the way for prospective clinical application that aims to efficiently detect, measure and treat microclots.

Source: Etheresia Pretorius, Massimo Nunes, Jan pretorius et al. Flow Clotometry: Measuring Amyloid Microclots in ME/CFS, Long COVID, and Healthy Samples with Imaging Flow Cytometry, 24 June 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-4507472/v1] https://www.researchsquare.com/article/rs-4507472/v1 (Full text)

Oxidative Stress is a shared characteristic of ME/CFS and Long COVID

Abstract:

More than 65 million individuals worldwide are estimated to have Long COVID (LC), a complex multisystemic condition, wherein patients of all ages report fatigue, post-exertional malaise, and other symptoms resembling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). With no current treatments or reliable diagnostic markers, there is an urgent need to define the molecular underpinnings of these conditions.

By studying bioenergetic characteristics of peripheral blood lymphocytes in over 16 healthy controls, 15 ME/CFS, and 15 LC, we find both ME/CFS and LC donors exhibit signs of elevated oxidative stress, relative to healthy controls, especially in the memory subset. Using a combination of flow cytometry, bulk RNA-seq analysis, mass spectrometry, and systems chemistry analysis, we also observed aberrations in ROS clearance pathways including elevated glutathione levels, decreases in mitochondrial superoxide dismutase levels, and glutathione peroxidase 4 mediated lipid oxidative damage.

Critically, these changes in redox pathways show striking sex-specific trends. While females diagnosed with ME/CFS exhibit higher total ROS and mitochondrial calcium levels, males with an ME/CFS diagnosis have normal ROS levels, but larger changes in lipid oxidative damage. Further analyses show that higher ROS levels correlates with hyperproliferation of T cells in females, consistent with the known role of elevated ROS levels in the initiation of proliferation. This hyperproliferation of T cells can be attenuated by metformin, suggesting this FDA-approved drug as a possible treatment, as also suggested by a recent clinical study of LC patients.

Thus, we report that both ME/CFS and LC are mechanistically related and could be diagnosed with quantitative blood cell measurements. We also suggest that effective, patient tailored drugs might be discovered using standard lymphocyte stimulation assays.

Source: Vishnu Shankar, Julie Wilhelmy, Basil Michael, Layla Cervantes, Vamsee Mallajosyula, Ronald Davis, Michael Snyder, Shady Younis,
William H Robinson, Sadasivan Shankar, Paul Mischel, Hector Bonilla, Mark Davis. Oxidative Stress is a shared characteristic of ME/CFS and Long COVID. bioRxiv 2024.05.04.592477; doi: https://doi.org/10.1101/2024.05.04.592477  https://www.biorxiv.org/content/10.1101/2024.05.04.592477v1https://www.biorxiv.org/content/10.1101/2024.05.04.592477v1 (Full text available as PDF file)

Epigenetic reprograming in myalgic encephalomyelitis/chronic fatigue syndrome: A narrative of latent viruses

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease presenting with severe fatigue, post-exertional malaise, and cognitive disturbances-among a spectrum of symptoms-that collectively render the patient housebound or bedbound. Epigenetic studies in ME/CFS collectively confirm alterations and/or malfunctions in cellular and organismal physiology associated with immune responses, cellular metabolism, cell death and proliferation, and neuronal and endothelial cell function.

The sudden onset of ME/CFS follows a major stress factor that, in approximately 70% of cases, involves viral infection, and ME/CFS symptoms overlap with those of long COVID. Viruses primarily linked to ME/CFS pathology are the symbiotic herpesviruses, which follow a bivalent latent-lytic lifecycle. The complex interaction between viruses and hosts involves strategies from both sides: immune evasion and persistence by the viruses, and immune activation and viral clearance by the host. This dynamic interaction is imperative for herpesviruses that facilitate their persistence through epigenetic regulation of their own and the host genome.

In the current article, we provide an overview of the epigenetic signatures demonstrated in ME/CFS and focus on the potential strategies that latent viruses-particularly Epstein-Barr virus-may employ in long-term epigenetic reprograming in ME/CFS. Epigenetic studies could aid in elucidating relevant biological pathways impacted in ME/CFS and reflect the physiological variations among the patients that stem from environmental triggers, including exogenous viruses and/or altered viral activity.

Source: Apostolou E, Rosén A. Epigenetic reprograming in myalgic encephalomyelitis/chronic fatigue syndrome: A narrative of latent viruses. J Intern Med. 2024 May 1. doi: 10.1111/joim.13792. Epub ahead of print. PMID: 38693641. https://onlinelibrary.wiley.com/doi/10.1111/joim.13792 (Full text)

Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007)

Abstract:

Objective: Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) often experience debilitating fatigue and autonomic dysregulation, yet objective measurements of these symptoms are limited. This study utilized actigraphic data from the United Kingdom Biobank (UKBB) to investigate (1) reduced activity in those with CFS, (2) decreased amplitudes of daily temperature rhythms as a potential indicator of autonomic dysregulation, and (3) the impact of specific single nucleotide polymorphisms (SNPs) associated with CFS on these actigraphic parameters.

Background: ME/CFS is a complex and poorly understood condition characterized by profound fatigue, postural orthostasis, and temperature dysregulation. Objective metrics reflecting these fatigue-related symptoms are scarce. Previous research explored small-scale actigraphic analyses, shedding light on movement and temperature patterns in CFS, but large-scale investigations remain limited. Genetic factors have also emerged as potential contributors to CFS risk, although how they affect phenotypic manifestations remains unclear.

Design/Methods: Actigraphic data from the UKBB were analyzed to compare those with CFS (n = 295) to controls (n = 63,133). Movement parameters, acceleration amplitudes, and temperature amplitudes were assessed. Additionally, the impact of specific SNPs associated with CFS on actigraphic measurements and subjective fatigue experiences was examined.

Results: In addition to profound fatigue, those with CFS exhibited significantly reduced overall movement (Cohen’s d = −0.220, p-value = 2.42 × 10–15), lower acceleration amplitudes (Cohen’s d = −0.377, p-value = 1.74 × 10−6), and decreased temperature amplitudes (Cohen’s d = −0.173, p-value = 0.002) compared to controls. Furthermore, certain SNPs associated with CFS were found to significantly influence both actigraphic measurements and subjective fatigue experiences.

Conclusions: This study provides valuable insights into the objective characterization of CFS using actigraphy, shedding light on the interaction between genetics and symptomatology in CFS. The findings offer avenues for further research into the pathophysiology of CFS and may contribute to a better understanding of fatigue-related conditions in general.

Source: Patrick Liu, David Raizen, Carsten Skarke, Thomas Brooks, and Ron Anafi. Actigraphic and Genetic Characterization of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Phenotypes in the UK Biobank (P10-9.007). Neurology, April 9, 2024 issue
102 (17_supplement_1) https://doi.org/10.1212/WNL.0000000000204829 https://www.neurology.org/doi/abs/10.1212/WNL.0000000000204829