Epigenetic reprograming in myalgic encephalomyelitis/chronic fatigue syndrome: A narrative of latent viruses

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease presenting with severe fatigue, post-exertional malaise, and cognitive disturbances-among a spectrum of symptoms-that collectively render the patient housebound or bedbound. Epigenetic studies in ME/CFS collectively confirm alterations and/or malfunctions in cellular and organismal physiology associated with immune responses, cellular metabolism, cell death and proliferation, and neuronal and endothelial cell function.

The sudden onset of ME/CFS follows a major stress factor that, in approximately 70% of cases, involves viral infection, and ME/CFS symptoms overlap with those of long COVID. Viruses primarily linked to ME/CFS pathology are the symbiotic herpesviruses, which follow a bivalent latent-lytic lifecycle. The complex interaction between viruses and hosts involves strategies from both sides: immune evasion and persistence by the viruses, and immune activation and viral clearance by the host. This dynamic interaction is imperative for herpesviruses that facilitate their persistence through epigenetic regulation of their own and the host genome.

In the current article, we provide an overview of the epigenetic signatures demonstrated in ME/CFS and focus on the potential strategies that latent viruses-particularly Epstein-Barr virus-may employ in long-term epigenetic reprograming in ME/CFS. Epigenetic studies could aid in elucidating relevant biological pathways impacted in ME/CFS and reflect the physiological variations among the patients that stem from environmental triggers, including exogenous viruses and/or altered viral activity.

Source: Apostolou E, Rosén A. Epigenetic reprograming in myalgic encephalomyelitis/chronic fatigue syndrome: A narrative of latent viruses. J Intern Med. 2024 May 1. doi: 10.1111/joim.13792. Epub ahead of print. PMID: 38693641. https://onlinelibrary.wiley.com/doi/10.1111/joim.13792 (Full text)

An approach to finding specific forms of dysbiosis that associate with different disorders

Abstract:

Background Many disorders display dysbiosis of the enteric microbiome, compared with healthy controls. Different disorders share a pattern of dysbiosis that may reflect ‘reverse causation’, due to non-specific effects of illness-in-general. Combining a range of disorders into an ‘aggregate non-healthy active control’ (ANHAC) group should highlight such non-specific dysbiosis. Differential dysbiosis between the ANHAC group and specific disorders may then reflect effects of treatment or bowel dysfunction, or may potentially be causal. Here, we illustrate this logic by testing if individual genera can differentiate an ANHAC group from two specific diagnostic groups.

Methods We constructed an ANAHC group (n=17) that had 14 different disorders. We then used random forest analyses to test differential dysbiosis between the ANHAC group and two other disorders that have no known pathology, but: (i) symptoms of illness (Myalgic Encephalomyelitis / Chronic Fatigue Syndrome – ME/CFS – n = 38); or (ii) both illness and bowel dysfunction (ME/CFS comorbid with Irritable Bowel Syndrome – IBS – n=27).

Results Many genera differentiated the ANHAC group from co-morbid IBS. However, only two genera – Roseburia and Dialister – discriminated the ANHAC group from ME/CFS.

Conclusions Different disorders can associate with specific forms of dysbiosis, over-and-above non-specific effects of illness-in-general. Bowel dysfunction may contribute to dysbiosis in IBS via reverse causation. However, ME/CFS has symptoms of illness-in-general, but lacks known pathology or definitive treatment that could cause dysbiosis. Therefore, the specific dysbiosis in ME/CFS may be causal. [230 words]

Contribution to the field Many disorders associate with enteric dysbiosis. The pattern of dysbiosis is largely consistent between unrelated disorders, which suggests that it mainly reflects non-specific secondary effects of illness-in-general (e.g. due to changes in activity levels, or diet). However, faecal microbiome transplantation (FMT) can be therapeutic in some disorders. This implies that unique features of dysbiosis may cause those specific disorders. Here, we propose a way to assess causal effects of dysbiosis, by testing if individual genera can discriminate individual disorders from an ‘aggregate non-healthy active control’ (ANHAC) group. Dysbiosis in the ANHAC group can control for non-specific effects of illness-in-general on the microbiome and so highlight potentially-causal forms of dysbiosis in specific disorders. This approach may provide insight into pathogenetic mechanisms of individual disorders and help to design specific forms of FMT to counteract them.

Source: Jonathan Williams, Inga Williams, Karl Morten, Julian Kenyon. An approach to finding specific forms of dysbiosis that associate with different disorders.

Longitudinal Cytokine and Multi-Modal Health Data of an Extremely Severe ME/CFS Patient with HSD Reveals Insights into Immunopathology, and Disease Severity

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents significant challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. To address these complexities, we employed a comprehensive approach, integrating longitudinal cytokine profiling with extensive clinical, health, textual, pharmaceutical, and nutraceutical data, and performed personalized analyses using AI.

Focusing on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) and marginal symptom improvements, our study highlights the dynamic nature of symptoms, severity, triggers, and modifying factors. As part of this study, we introduced an updated platform and two applications, ME-CFSTrackerApp, and LexiTime, facilitating real-time symptom tracking and enhancing physician-patient communication.

Our longitudinal cytokine profiling underscores the significance of Th2-type cytokines and synergistic activities between mast cells and eosinophils, leading to skewing of Th1 toward Th2 immune responses in ME/CFS pathogenesis, especially in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major comorbidities.

Additionally, our data reveal potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasize the importance of investigating low-dose drugs with partial agonist activity in ME/CFS treatment. Our analyses underscore the patient-centered care approach for better healthcare management.

Source: Fereshteh Jahanbani1, Justin C. Sing, Rajan D. Maynard, Shaghayegh Jahanbani, Janet Dafoe, Whitney Dafoe, Nathan Jones, Kelvin J. Wallace, Azuravesta Rastan, Hannes Rost, Holden Maecker, Michael P. Snyder, Ronald W. Davis. Longitudinal Cytokine and Multi-Modal Health Data of an Extremely Severe ME/CFS Patient with HSD Reveals Insights into Immunopathology, and Disease Severity. Front. Immunol. Sec. Autoimmune and Autoinflammatory Disorders: Autoinflammatory Disorders. Volume 15 – 2024 | doi: 10.3389/fimmu.2024.1369295 https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1369295/abstract

A Novel Fluorogenic Probe Reveals Lipid Droplet Dynamics in ME/CFS Fibroblasts

Abstract:

Lipid droplets (LDs) are dynamic cellular organelles that play an essential role in lipid metabolism and storage. LD dysregulation has been implicated in various diseases. However, investigations into the cellular LD dynamics under disease conditions have been rarely reported, possibly due to the absence of high performing LD imaging agents.

Here a novel fluorogenic probe, AM-QTPA, is reported for specific LD imaging. AM-QTPA demonstrates viscosity sensitivity and aggregation-induced emission enhancement characteristics. It is live cell permeable and can specifically light up LDs in cells, with low background noise and superior signals that can be quantified.

After validation in cell model with LD accumulation induced by oleic acid treatment, AM-QTPA is applied in a small proof-of-concept number of human fibroblast samples derived from people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a complex and debilitating disease with unknown cause.

The results indicate the presence of larger but fewer LDs in ME/CFS fibroblasts compared to the healthy counterparts, accompanying with frequent LD-mitochondria contacts, suggesting potential upregulation of lipolysis in ME/CFS connective tissue like fibroblasts.

Overall, AM-QTPA provides new understanding of the anomalous LD dynamics in disease status, which, potentially, will facilitate in-depth investigation of the pathogenesis of ME/CFS.

Source: Ding, S., Sanislav, O., Missailidis, D., Allan, C.Y., Owyong, T.C., Wu, M.-Y., Chen, S., Fisher, P.R., Annesley, S.J. and Hong, Y. (2024), A Novel Fluorogenic Probe Reveals Lipid Droplet Dynamics in ME/CFS Fibroblasts. Adv. Sensor Res. 2300178. https://doi.org/10.1002/adsr.202300178 https://onlinelibrary.wiley.com/doi/full/10.1002/adsr.202300178 (Full text)

Chronic Fatigue Syndrome, Viruses and Related Conditions in Women: The Liver Link

Abstract:

Chronic Fatigue Syndrome (CFS) can be triggered by different factors and create a complex health situation. In the last decades incidence has been increasing. This situation is a clear example of how humans, viruses, and the environment are all connected.
In the 90s cases related to CFS, complaints about a feeling of chronic fatigue, inability for everyday tasks, dull pain, cephalalgia, de-pression, anxiety, poor concentration. Clinical tests for EBV, HHV, CMV, IgG, IgM, T4 and T8 subsets were tested, along with hormones and hemogram tests. Most of the cases were women. The timeline of the medical history showed also myomas, breast lumps, premenstrual syndrome previously to CFS development. The nature of these conditions promoted the idea of a possible common link among them and CFS. Some cases also suffered from allergies, food intolerances, candidiasis, intestinal impairment, thyroid implications, endometriosis.
As an initial working hypothesis, The Liver Link (TLL) was proposed in order to understand those different conditions affecting body, mind and emotional wellbeing. Considering liver implication can make a difference in treatment and recovery. Low grade inflammatory conditions are related to Th2 predominance and liver functions. Functional disharmonies are very important because they usually still do not appear in any conventional tests.
In 2002, TLL was presented as a framework to explain the concomitance of CFS and other conditions and the relationship with some viruses such as EBV, HHV, CMV, as a lecture in a congress at the University of Westminster (London). When SARS-CoV-2 outbroke, TLL helped to warn about the post-covid syndrome more likely to occur in specific individuals.
Source: Lorite-Ayán, N. Chronic Fatigue Syndrome, Viruses and Related Conditions in Women: The Liver Link. Preprints 2024, 2024011654. https://doi.org/10.20944/preprints202401.1654.v1 https://www.preprints.org/manuscript/202401.1654/v1 (Full text available as PDF file)

Central 5-HTergic hyperactivity induces myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-like pathophysiology

Abstract:

Objectives: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a significant medical challenge, with no indisputable pathophysiological mechanism identified to date.

Methods: Based on clinical clues, we hypothesized that 5-hydroxytryptamine (5-HT) hyperactivation is implicated in the pathogenic causes of ME/CFS and the associated symptoms. We experimentally evaluated this hypothesis in a series of mouse models.

Results: High-dose selective serotonin reuptake inhibitor (SSRI) treatment induced intra- and extracellular serotonin spillover in the dorsal raphe nuclei of mice. This condition resulted in severe fatigue (rota-rod, fatigue rotating wheel and home-cage activity tests) and ME/CFS-associated symptoms (nest building, plantar and open field test), along with dysfunction in the hypothalamic-pituitary-adrenal (HPA) axis response to exercise challenge. These ME/CFS-like features induced by excess serotonin were additionally verified using both a 5-HT synthesis inhibitor and viral vector for Htr1a (5-HT1A receptor) gene knockdown.

Conclusions: Our findings support the involvement of 5-HTergic hyperactivity in the pathophysiology of ME/CFS. This ME/CFS-mimicking animal model would be useful for understanding ME/CFS biology and its therapeutic approaches.

Source: Lee JS, Kang JY, Park SY, Hwang SJ, Bae SJ, Son CG. Central 5-HTergic hyperactivity induces myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-like pathophysiology. J Transl Med. 2024 Jan 8;22(1):34. doi: 10.1186/s12967-023-04808-x. PMID: 38191373. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04808-x (Full text)

Heterogenous circulating miRNA changes in ME/CFS converge on a unified cluster of target genes: A computational analysis

Abstract:

Myalgic Encephalomyelitis / Chronic Fatigue Syndrome is a debilitating, multisystem disease of unknown mechanism, with a currently ongoing search for its endocrine mediators. Circulating microRNAs (miRNA) are a promising candidate for such a mediator and have been reported as significantly different in the patient population versus healthy controls by multiple studies. None of these studies, however, agree with each other on which specific miRNA are under- or over-expressed.

This discrepancy is the subject of the computational study presented here, in which a deep dive into the predicted gene targets and their functional interactions is conducted, revealing that the aberrant circulating miRNAs in ME/CFS, although different between patients, seem to mainly target the same specific set of genes (p ≈ 0.0018), which are very functionally related to each other (p ≲ 0.0001).

Further analysis of these functional relations, based on directional pathway information, points to impairments in exercise hyperemia, angiogenic adaptations to hypoxia, antioxidant defenses, and TGF-β signaling, as well as a shift towards mitochondrial fission, corroborating and explaining previous direct observations in ME/CFS. Many transcription factors and epigenetic modulators are implicated as well, with currently uncertain downstream combinatory effects.

As the results show significant similarity to previous research on latent herpesvirus involvement in ME/CFS, the possibility of a herpesvirus origin of these miRNA changes is also explored through further computational analysis and literature review, showing that 8 out of the 10 most central miRNAs analyzed are known to be upregulated by various herpesviruses. In total, the results establish an appreciable and possibly central role for circulating microRNAs in ME/CFS etiology that merits further experimental research.

Source: Kaczmarek MP. Heterogenous circulating miRNA changes in ME/CFS converge on a unified cluster of target genes: A computational analysis. PLoS One. 2023 Dec 29;18(12):e0296060. doi: 10.1371/journal.pone.0296060. PMID: 38157384; PMCID: PMC10756525. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756525/ (Full text)

Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview

Abstract:

Post-viral fatigue syndrome (PVFS) encompasses a wide range of complex neuroimmune disorders of unknown causes characterised by disabling post-exertional fatigue, myalgia and joint pain, cognitive impairments, unrefreshing sleep, autonomic dysfunction, and neuropsychiatric symptoms. It includes myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS); fibromyalgia (FM); and more recently post-COVID-19 condition (long COVID). To date, there are no definitive clinical case criteria and no FDA-approved pharmacological therapies for PVFS. Given the current lack of effective treatments, there is a need to develop novel therapeutic strategies for these disorders.
Mitochondria, the cellular organelles responsible for tissue energy production, have recently garnered attention in research into PVFS due to their crucial role in cellular bioenergetic metabolism in these conditions. The accumulating literature has identified a link between mitochondrial dysfunction and low-grade systemic inflammation in ME/CFS, FM, and long COVID. To address this issue, this article aims to critically review the evidence relating to mitochondrial dysfunction in the pathogenesis of these disorders; in particular, it aims to evaluate the effectiveness of coenzyme Q10 supplementation on chronic fatigue and pain symptoms as a novel therapeutic strategy for the treatment of PVFS.
Source: Mantle D, Hargreaves IP, Domingo JC, Castro-Marrero J. Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview. International Journal of Molecular Sciences. 2024; 25(1):574. https://doi.org/10.3390/ijms25010574 https://www.mdpi.com/1422-0067/25/1/574 (Full text)

Augmentation of Anaerobic Pentose Phosphate Pathway Dysregulates Tetrahydrobiopterin Metabolism in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) Patients with Orthostatic Intolerance: A Pilot Study

Abstract:

Tetrahydrobiopterin (BH4), an essential cofactor of amino acid metabolism, was found to be strongly elevated in ME/CFS patients with Orthostatic intolerance (ME + OI). However, the molecular mechanism of BH4 upregulation is poorly understood in ME + OI patients. Here, we report that the activation of the non-oxidative pentose phosphate pathway (PPP) plays a critical role in the biosynthesis of BH4 in ME + OI patients.

Microarray-based gene screening followed by real-time PCR-based validation, ELISA assay, and finally enzyme kinetic studies of glucose-6-phosphate dehydrogenase (G6PDH), transaldolase (TALDO1), and transketolase (TK) enzymes revealed that the augmentation of anaerobic PPP is critical in the pathogenesis of ME + OI. Along with the upregulated anaerobic PPP enzymes, we observed that biopterin metabolites such as BH4 and dihydrobiopterin (BH2) are strongly upregulated suggesting the disruption of biopterin homeostasis in ME + OI patients.

To explore the molecular role of anaerobic PPP in biopterin metabolism, we devised a novel cell culture strategy to induce non-oxidative PPP by treating human microglial cells with ribose-5-phosphate (R5P) under a hypoxic condition of 85%N2/10%CO2/5%O2 followed by the analysis of BH4 and BH2 upregulation via ELISA, immunoblot and dual immunocytochemical analyses.

These results confirmed that the activation of non-oxidative PPP is indeed required for the upregulation of both BH4 and BH2. Moreover, the siRNA knocking down of the taldo1 gene strongly inhibited the expression of GTP cyclohydrolase 1 (GTPCH1) and subsequent production of BH4 and its metabolic conversion to BH2 in R5P-treated and hypoxia-induced C20 human microglia cells. To test the functional role of ME + OI plasma-derived biopterins, exogenously added plasma samples of ME + OI plasma with high BH4 upregulated inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in human microglial cells indicating that the non-oxidative PPP-induced-biopterins could stimulate inflammatory response in ME + OI patients.

Source: Sarojini Bulbule, Carl Gunnar Gottschalk, Molly E Drosen et al. Augmentation of Anaerobic Pentose Phosphate Pathway Dysregulates Tetrahydrobiopterin Metabolism in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) Patients with Orthostatic Intolerance: A Pilot Study, 11 December 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3716093/v1] https://www.researchsquare.com/article/rs-3716093/v1 (Full text)

DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients

Abstract:

Purpose: Fibromyalgia (FM) and Chronic Fatigue Syndrome (CFS) affect 0.4% and 1% of society, respectively, and the prevalence of these pain syndromes is increasing. To date, no strong association between these syndromes and the genetic background of affected individuals has been shown. Therefore, it is plausible that epigenetic changes might play a role in the development of these syndromes.

Patients and Methods: Three previous studies have attempted to elaborate the involvement of genome-wide methylation changes in blood cells in the development of fibromyalgia and chronic fatigue syndrome. These studies included 22 patients with fibromyalgia and 127 patients with CFS, and the results of the studies were largely discrepant. Contradicting results of those studies may be attributed to differences in the omics data analysis approaches used in each study. We reanalyzed the data collected in these studies using an updated and coherent data-analysis framework.

Results: Overall, the methylation changes that we observed overlapped with previous results only to some extent. However, the gene set enrichment analyses based on genes annotated to methylation changes identified in each of the analyzed datasets were surprisingly coherent and uniformly associated with the physiological processes that, when affected, may result in symptoms characteristic of fibromyalgia and chronic fatigue syndrome

Conclusion: Methylomes of the blood cells of patients with FM and CFS in three independent studies have shown methylation changes that appear to be implicated in the pathogenesis of these syndromes.

Source: Przybylowicz PK, Sokolowska KE, Rola H, Wojdacz TK. DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients. J Pain Res. 2023;16:4025-4036 https://doi.org/10.2147/JPR.S439412 https://www.dovepress.com/dna-methylation-changes-in-blood-cells-of-fibromyalgia-and-chronic-fat-peer-reviewed-fulltext-article-JPR (Full text)