Press Release: Columbia University’s Mailman School of Public Health, July 9, 2018. A study led by researchers at the Center for Infection and Immunity (CII) at Columbia University’s Mailman School of Public Health has identified a constellation of metabolites related to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Combining this data with data from an earlier microbiome study, the researchers now report they can predict whether or not someone has the disorder with a confidence of 84 percent.
The research team analyzed blood samples provided by 50 patients with ME/CFS and 50 controls matched for sex and age who were recruited at four clinical sites across the United States. Using mass spectrometry, a laboratory technique used to identify molecules by measuring their mass, the scientists found 562 metabolites — microscopic byproducts of human and microbial processes such as sugar, fat, and protein molecules. They excluded molecules related to antidepressants and other drugs patients might be taking.
Their metabolomics analysis, among the most detailed and meticulous to date, uncovered altered levels of metabolites, including choline, carnitine and several complex lipids present in patients with ME/CFS. The altered metabolites suggest dysfunction of the mitochrondria, the cellular powerplant, a finding in line with those reported by other research teams. Uniquely, the CII study also reports a second distinct pattern of metabolites in patients with ME/CFS and irritable bowel syndrome (IBS), matching earlier findings from their 2017 fecal microbiome study. Half of the patients with ME/CFS also had IBS.
When the researchers combined biomarkers from both the microbiome study and the new metabolome study, they reported a .836 predictive score, indicating an 84 percent certainty as to the presence of ME/CFS — better than with either study alone.
“This is a strong predictive model that suggests we’re getting close to the point where we’ll have lab tests that will allow us to say with a high level of certainty who has this disorder,” says first author Dorottya Nagy-Szakal, MD, PhD, a researcher at CII.
Continue reading “Insights from metabolites get us closer to a test for chronic fatigue syndrome”