Inhibition of HIF-2α Pathway as a Potential Therapeutic Strategy for Endothelial Dysfunction in Post-COVID Syndrome

Abstract:

Background SARS-CoV-2 infection may lead to Post-COVID Syndrome (PCS), characterized by debilitating symptoms like persistent fatigue, cardiovascular symptoms, and cognitive dysfunction. Persistent endothelial dysfunction (ED) is a potential driver of ongoing symptoms. Yet, the underlying biological mechanisms remain unclear.

Methods In this prospective observational study, we characterized 41 PCS patients and 24 healthy controls (HC, matched out of n = 204, recruited before the pandemic) and investigated the effect of SARS-CoV-2 Spike protein 1 (S1) and plasma from PCS patients on human retinal endothelial cells (HREC).

Results Plasma samples from PCS patients exhibited significantly elevated erythropoietin, VEGF and MCP-1 alongside decreased IL-6 levels compared to HC. Low Haemoglobin and Haematocrit were negatively associated with PCS severity. VEGF levels were positively correlated with Anti-S1 IgG levels in patients and upregulated on mRNA level in HREC exposed to S1. Additionally, S1 exposure promoted ROS production and transiently activated HIF-1α in HREC. Persistent activation of HIF-2α by S1 led to disrupted endothelial integrity. HREC exposed to plasma from severely affected PCS patients showed increased ROS and compromised barrier function. Treatment with Belzutifan, a HIF-2α inhibitor, restored barrier integrity in HREC exposed to S1 or PCS-plasma.

Conclusion These findings suggest that HIF-2α-mediated ED in PCS might be a potential therapeutical target for Belzutifan.

Trial registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT05635552

What Is Known?

  • Endothelial dysfunction (ED) is a consequence of acute SARS-CoV-2 infection and may lead to Post-COVID syndrome (PCS) symptoms.

  • Patients with PCS show elevated inflammation and endothelial dysfunction markers.

  • Spike proteins can persist for up to 12 months post-infection, driving ongoing inflammation and immune activation.

What New Information Does This Article Contribute?

  • Low haemoglobin (Hb) and high VEGF correlate with higher Anti-S1 IgG and low Hb is associated with higher C19-YRS severity score.

  • PCS patients exhibit higher Erythropoietin (EPO) levels when compared to HC.

  • Spike protein 1 (S1) alone and PCS patient’s plasma induce endothelial dysfunction primarily through HIF-2α activation.

  • Both S1 and PCS plasma cause oxidative stress and disrupting endothelial integrity.

  • Inhibition of HIF-2α effectively restores endothelial barrier integrity disrupted by S1 and PCS plasma.

What New Information Does This Article Contribute? Persistent circulation of spike proteins can sustain chronic inflammation and immune activation in patients with PCS. Here we show that plasma from PCS patients exhibits significantly elevated levels of VEGF which positively correlates with Anti-S1 IgG. Low haemoglobin was associated with higher Anti-S1 IgG titres and correlated with a higher C19-YRS severity score. Levels of EPO were higher in PCS patients, with a more pronounced effect observed in patients with cardiovascular symptoms. In human retinal endothelial cells, both S1 and plasma from PCS patients primarily induce ED through HIF-2α activation, rather than NF-κB. Both factors lead to significant oxidative stress, evidenced by increased ROS production which in turn disrupts endothelial barrier integrity and function. Notably, Belzutifan, a HIF-2α inhibitor, can restore this compromised endothelial function, offering a potential therapeutic target for PCS.

Source: Andrea Ribeiro, Timon Kuchler, Maciej Lech, Javier Carbajo-Lozoya, Kristina Adorjan, Hans Christian Stubbe, Martina Seifert, Anna Wöhnle, Veronika Kesseler, Johanna Negele, Uwe Heemann, Christoph Schmaderer. Inhibition of HIF-2α Pathway as a Potential Therapeutic Strategy for Endothelial Dysfunction in Post-COVID Syndrome medRxiv 2024.09.10.24313403; doi: https://doi.org/10.1101/2024.09.10.24313403 https://www.medrxiv.org/content/10.1101/2024.09.10.24313403v1.full-text (Full text)

Elevated vascular transformation blood biomarkers in Long-COVID indicate angiogenesis as a key pathophysiological mechanism

Abstract:

Background: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients.

Methods: A case–control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D.

Results: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05).

Conclusions: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.

Source: Patel, M.A., Knauer, M.J., Nicholson, M. et al. Elevated vascular transformation blood biomarkers in Long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol Med 28, 122 (2022). https://doi.org/10.1186/s10020-022-00548-8 https://molmed.biomedcentral.com/articles/10.1186/s10020-022-00548-8 (Full text)

Reductions in circulating levels of IL-16, IL-7 and VEGF-A in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Recently, differences in the levels of various chemokines and cytokines were reported in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as compared with controls. Moreover, the analyte profile differed between chronic ME/CFS patients of long duration versus patients with disease of less than 3 years. In the current study, we measured the plasma levels of 34 cytokines, chemokines and growth factors in 100 chronic ME/CFS patients of long duration and in 79 gender and age-matched controls.

We observed highly significant reductions in the concentration of circulating interleukin (IL)-16, IL-7, and Vascular Endothelial Growth Factor A (VEGF-A) in ME/CFS patients. All three biomarkers were significantly correlated in a multivariate cluster analysis. In addition, we identified significant reductions in the concentrations of fractalkine (CX3CL1) and monokine-induced-by-IFN-γ (MIG; CXCL9) along with increases in the concentrations of eotaxin 2 (CCL24) in ME/CFS patients.

Our data recapitulates previous data from another USA ME/CFS cohort in which circulating levels of IL-7 were reduced. Also, a reduced level of VEGF-A was reported previously in sera of patients with Gulf War Illness as well as in cerebral spinal fluid samples from a different cohort of USA ME/CFS patients.

To our knowledge, we are the first to test for levels of IL-16 in ME/CFS patients. In combination with previous data, our work suggests that the clustered reduction of IL-7, IL-16 and VEGF-A may have physiological relevance to ME/CFS disease. This profile is ME/CFS-specific since measurement of the same analytes present in chronic infectious and autoimmune liver diseases, where persistent fatigue is also a major symptom, failed to demonstrate the same changes. Further studies of other ME/CFS and overlapping disease cohorts are warranted in future.

Copyright © 2015 Elsevier Ltd. All rights reserved.

 

Source: Landi A, Broadhurst D, Vernon SD, Tyrrell DL, Houghton M. Reductions in circulating levels of IL-16, IL-7 and VEGF-A in myalgic encephalomyelitis/chronic fatigue syndrome. Cytokine. 2016 Feb;78:27-36. doi: 10.1016/j.cyto.2015.11.018. Epub 2015 Nov 28. https://www.ncbi.nlm.nih.gov/pubmed/26615570