Effects of Post-Exertional Malaise on Markers of Arterial Stiffness in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Evidence is emerging that individuals with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may suffer from chronic vascular dysfunction as a result of illness-related oxidative stress and vascular inflammation. The study aimed to examine the impact of maximal-intensity aerobic exercise on vascular function 48 and 72 h into recovery.

Methods: ME/CFS (n = 11) with gender and age-matched controls (n = 11) were randomly assigned to either a 48 h or 72 h protocol. Each participant had measures of brachial blood pressure, augmentation index (AIx75, standardized to 75 bpm) and carotid-radial pulse wave velocity (crPWV) taken. This was followed by a maximal incremental cycle exercise test. Resting measures were repeated 48 or 72 h later (depending on group allocation).

Results: No significant differences were found when ME/CFS were directly compared to controls at baseline. During recovery, the 48 h control group experienced a significant 7.2% reduction in AIx75 from baseline measures (p < 0.05), while the matched ME/CFS experienced no change in AIx75. The 72 h ME/CFS group experienced a non-significant increase of 1.4% from baseline measures. The 48 h and 72 h ME/CFS groups both experienced non-significant improvements in crPWV (0.56 ms−1 and 1.55 ms−1, respectively).

Conclusions: The findings suggest that those with ME/CFS may not experience exercise-induced vasodilation due to chronic vascular damage, which may be a contributor to the onset of post-exertional malaise (PEM).

Source: Bond J, Nielsen T, Hodges L. Effects of Post-Exertional Malaise on Markers of Arterial Stiffness in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Environmental Research and Public Health. 2021; 18(5):2366. https://doi.org/10.3390/ijerph18052366 https://www.mdpi.com/1660-4601/18/5/2366/htm (Full text)

Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Abstract:

Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients frequently show autonomic symptoms which may be associated with a hypothalamic dysfunction. This study aimed to explore circadian rhythm patterns in rest and activity and distal skin temperature (DST) and their association with self-reported outcome measures, in CFS/ME patients and healthy controls at two different times of year.

Ten women who met both the 1994 CDC/Fukuda definition and 2003 Canadian criteria for CFS/ME were included in the study, along with ten healthy controls matched for age, sex and body mass index. Self-reported measures were used to assess fatigue, sleep quality, anxiety and depression, autonomic function and health-related quality of life. The ActTrust actigraph was used to record activity, DST and light intensity, with data intervals of one minute over seven consecutive days. Sleep variables were obtained through actigraphic analysis and from subjective sleep diary. The circadian variables and the spectral analysis of the rhythms were calculated. Linear regression analysis was used to evaluate the relationship between the rhythmic variables and clinical features. Recordings were taken in the same subjects in winter and summer.

Results showed no differences in rhythm stability, sleep latency or number of awakenings between groups as measured with the actigraph. However, daily activity, the relative amplitude and the stability of the activity rhythm were lower in CFS/ME patients than in controls. DST was sensitive to environmental temperature and showed lower nocturnal values in CFS/ME patients than controls only in winter. A spectral analysis showed no differences in phase or amplitude of the 24h rhythm, but the power of the second harmonic (12h), revealed differences between groups (controls showed a post-lunch dip in activity and peak in DST, while CFS/ME patients did not) and correlated with clinical features. These findings suggest that circadian regulation and skin vasodilator responses may play a role in CFS/ME.

Source: Cambras T, Castro-Marrero J, Zaragoza MC, Díez-Noguera A, Alegre J. Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. PLoS One. 2018 Jun 6;13(6):e0198106. doi: 10.1371/journal.pone.0198106. eCollection 2018.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991397/  (Full article)

Acetylcholine mediated vasodilatation in the microcirculation of patients with chronic fatigue syndrome

Abstract:

The aetiology of chronic fatigue syndrome (CFS) remains controversial and a number of hypotheses have been put forward to explain it. Research into the condition is hindered by the considerable heterogeneity seen across patients but several reports have highlighted disturbances to cholinergic mechanisms in terms of central nervous system activity, neuromuscular function and autoantibodies to muscarinic cholinergic receptors. This paper examines an altogether separate function for acetylcholine and that is its role as an important and generalized vasodilator.

Most diseases are accompanied by a blunted response to acetylcholine but the opposite is true for CFS. Such sensitivity is normally associated with physical training so the finding in CFS is anomalous and may well be relevant to vascular symptoms that characterise many patients. There are several mechanisms that might lead to ACh endothelial sensitivity in CFS patients and various experiments have been designed to unravel the enigma. These are reported here.

 

Source: Spence VA, Khan F, Kennedy G, Abbot NC, Belch JJ. Acetylcholine mediated vasodilatation in the microcirculation of patients with chronic fatigue syndrome. Prostaglandins Leukot Essent Fatty Acids. 2004 Apr;70(4):403-7. http://www.ncbi.nlm.nih.gov/pubmed/15041034

 

Prolonged acetylcholine-induced vasodilatation in the peripheral microcirculation of patients with chronic fatigue syndrome

Abstract:

Although the aetiology of chronic fatigue syndrome (CFS) is unknown, there have been a number of reports of blood flow abnormalities within the cerebral circulation and systemic blood pressure defects manifesting as orthostatic intolerance. Neither of these phenomena has been explained adequately, but recent reports have linked cerebral hypoperfusion to abnormalities in cholinergic metabolism.

Our group has previously reported enhanced skin vasodilatation in response to cumulative doses of transdermally applied acetylcholine (ACh), implying an alteration of peripheral cholinergic function. To investigate this further, we studied the time course of ACh-induced vasodilatation following a single dose of ACh in 30 patients with CFS and 30 age- and gender-matched healthy control subjects.

No differences in peak blood flow was seen between patients and controls, but the time taken for the ACh response to recover to baseline was significantly longer in the CFS patients than in control subjects. The time taken to decay to 75% of the peak response in patients and controls was 13.7 +/- 11.3 versus 8.9 +/- 3.7 min (P = 0.03), respectively, and time taken to decay to 50% of the peak response was 24.5 +/- 18.8 versus 15.1 +/- 8.9 min (P = 0.03), respectively.

Prolongation of ACh-induced vasodilatation is suggestive of a disturbance to cholinergic pathways, perhaps within the vascular endothelium of patients with CFS, and might be related to some of the unusual vascular symptoms, such as hypotension and orthostatic intolerance, which are characteristic of the condition.

 

Source: Khan F, Spence V, Kennedy G, Belch JJ. Prolonged acetylcholine-induced vasodilatation in the peripheral microcirculation of patients with chronic fatigue syndrome. Clin Physiol Funct Imaging. 2003 Sep;23(5):282-5. http://www.ncbi.nlm.nih.gov/pubmed/12950326