Effects of whole-body cryotherapy and static stretching are maintained 4 weeks after treatment in most patients with chronic fatigue syndrome

Abstract

In the previous study, whole-body cryotherapy (WBC)+static stretching (SS) has been shown to reduce the severity of some symptoms in Chronic Fatigue Syndrome (CFS) noted just after the therapy. Here we consider the effects of treatment and explore the sustainability of symptom improvements at four weeks (one-month) follow-up.

Twenty-two CFS patients were assessed one month after WBC + SS programme. Parameters related to fatigue (Chalder Fatigue Questionnaire (CFQ), Fatigue Impact Scale (FIS), Fatigue Severity Scale (FSS)), cognitive function (Trial Making test part A and B (TMT A and TMT B and its difference (TMT B-A)), Coding) hemodynamic, aortic stiffness (aortic systolic blood pressure (sBP aortic)) and autonomic nervous system functioning were measured. TMT A, TMT B, TMT B-A and Coding improved at one month after the WBC + SS programme.

WBC + SS had a significant effect on the increase in sympathetic nervous system activity in rest. WBC + SS had a significant, positive chronotropic effect on the cardiac muscle. Peripheral and aortic systolic blood pressure decreased one month after WBC + SS in comparison to before.

Effects of WBC + SS on reduction of fatigue, indicators of aortic stiffness and symptoms severity related to autonomic nervous system disturbance and improvement in cognitive function were maintained at one month.

However, improvement in all three fatigue scales (CFQ, FIS and FSS) was noted in 17 of 22 patients. In addition, ten patients were treated initially but they were not assessed at 4 weeks, and are thus not included in the 22 patients who were examined on follow-up. The overall effects of WBC + SS noted at one month post-treatment should be interpreted with caution.

Source: Kujawski S, Zalewski P, Godlewska BR, Cudnoch-Jędrzejewska A, Murovska M, Newton JL, Sokołowski Ł, Słomko J. Effects of whole-body cryotherapy and static stretching are maintained 4 weeks after treatment in most patients with chronic fatigue syndrome. Cryobiology. 2023 May 23:S0011-2240(23)00035-4. doi: 10.1016/j.cryobiol.2023.05.003. Epub ahead of print. PMID: 37230457. https://www.sciencedirect.com/science/article/pii/S0011224023000354?via%3Dihub (Full text)

Chronic Fatigue Syndrome and Multiple Sclerosis have Reduced Craniospinal Compliance and Dilated Pressurized Bridging Cortical Veins: A Hypothesis Illustrated with Two Case Studies

Abstract:

Chronic fatigue syndrome (CFS) and multiple sclerosis (MS) share similarities regarding their epidemiology, symptomatology and craniospinal physiology. Indeed, the cardinal feature of CFS, fatigue, is also a major factor in the symptomatology of the majority of MS patients.

Recently, we have found that there is a significant reduction in the craniospinal compliance in MS which affects both the stiffness of the walls of the spinal canal and the walls of the cerebral venous system. This change in compliance brings about an alteration in the effectiveness of the pulse wave dampening in the craniospinal system. The result is an impedance mismatch between the cortical veins and their draining sinuses, leading to dilatation of these upstream veins.

We deduce this dilatation can only be brought about by an increase in the pressure gradient between the vein lumen and the subarachnoid space (i.e. the transmural pressure gradient). We hypothesise that given the similarities between MS and CFS, a similar mechanism underlies the physiology of CFS. We present two case studies to highlight the expected findings in CFS patients if this hypothesis were proven to be correct.

Source: Bateman, G.; Bateman, A. Chronic Fatigue Syndrome and Multiple Sclerosis have Reduced Craniospinal Compliance and Dilated Pressurized Bridging Cortical Veins: A Hypothesis Illustrated with Two Case Studies. Preprints.org 2023, 2023052264. https://doi.org/10.20944/preprints202305.2264.v1 https://www.preprints.org/manuscript/202305.2264/v1 (Full text available as PDF file)

Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study

Abstract:

COVID-19-associated vascular disease complications are primarily associated with endothelial dysfunction; however, the consequences of disease on vascular structure and function, particularly in the long term (>7 weeks post-infection), remain unexplored. Individual pre- and post-infection changes in arterial stiffness as well as central and systemic hemodynamic parameters were measured in patients diagnosed with mild COVID-19.
As part of in-laboratory observational studies, baseline measurements were taken up to two years before, whereas the post-infection measurements were made 2–3 months after the onset of COVID-19. We used the same measurement protocol throughout the study as well as linear and mixed-effects regression models to analyze the data. Patients (N = 32) were predominantly healthy and young (mean age ± SD: 36.6 ± 12.6). We found that various parameters of arterial stiffness and central hemodynamics—cfPWV, AIx@HR75, and cDBP as well as DBP and MAP—responded to a mild COVID-19 disease.
The magnitude of these responses was dependent on the time since the onset of COVID-19 as well as age (pregression_models ≤ 0.013). In fact, mixed-effects models predicted a clinically significant progression of vascular impairment within the period of 2–3 months following infection (change in cfPWV by +1.4 m/s, +15% in AIx@HR75, approximately +8 mmHg in DBP, cDBP, and MAP).
The results point toward the existence of a widespread and long-lasting pathological process in the vasculature following mild COVID-19 disease, with heterogeneous individual responses, some of which may be triggered by an autoimmune response to COVID-19.
Source: Podrug M, Koren P, Dražić Maras E, Podrug J, Čulić V, Perissiou M, Bruno RM, Mudnić I, Boban M, Jerončić A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. Journal of Clinical Medicine. 2023; 12(6):2123. https://doi.org/10.3390/jcm12062123 https://www.mdpi.com/2077-0383/12/6/2123 (Full text)

Changes in the Allostatic Response to Whole-Body Cryotherapy and Static-Stretching Exercises in Chronic Fatigue Syndrome Patients vs. Healthy Individuals

Abstract:

This study represents a comparison of the functional interrelation of fatigue and cognitive, cardiovascular and autonomic nervous systems in a group of Chronic Fatigue Syndrome (CFS) patients compared with those in healthy individuals at different stages of analysis: at baseline and after changes induced by whole-body cryotherapy (WBC) combined with a static-stretching (SS) program. The study included 32 patients (Fukuda criteria) and 18 healthy controls. Fatigue, cognitive, cardiovascular and autonomic function and arterial stiffness were measured before and after 10 sessions of WBC with SS.

In the patients, a disturbance in homeostasis was observed. The network relationship based on differences before and after intervention showed comparatively higher stress and eccentricity in the CFS group: 50.9 ± 56.1 vs. 6.35 ± 8.72, p = 0.002, r = 0.28; and 4.8 ± 0.7 vs. 2.4 ± 1, p < 0.001, r = 0.46, respectively.

Before and after intervention, in the CFS group increased fatigue was related to baroreceptor function, and baroreceptor function was in turn related to aortic stiffness, but no such relationships were observed in the control group. Differences in the network structure underlying the interrelation among the four measured criteria were observed in both groups, before the intervention and after ten sessions of whole cryotherapy with a static stretching exercise.

Source: Kujawski S, Bach AM, Słomko J, Pheby DFH, Murovska M, Newton JL, Zalewski P. Changes in the Allostatic Response to Whole-Body Cryotherapy and Static-Stretching Exercises in Chronic Fatigue Syndrome Patients vs. Healthy Individuals. J Clin Med. 2021 Jun 25;10(13):2795. doi: 10.3390/jcm10132795. PMID: 34202023. https://pubmed.ncbi.nlm.nih.gov/34202023/

Post-Exertional Malaise May Be Related to Central Blood Pressure, Sympathetic Activity and Mental Fatigue in Chronic Fatigue Syndrome Patients

Abstract:

Post-exertional malaise (PEM) is regarded as the hallmark symptom in chronic fatigue syndrome (CFS). The aim of the current study is to explore differences in CFS patients with and without PEM in indicators of aortic stiffness, autonomic nervous system function, and severity of fatigue. One-hundred and one patients met the Fukuda criteria.

A Chronic Fatigue Questionnaire (CFQ) and Fatigue Impact Scale (FIS) were used to assess the level of mental and physical fatigue. Aortic systolic blood pressure (sBPaortic) and the autonomic nervous system were measured with the arteriograph and Task Force Monitor, respectively. Eighty-two patients suffered prolonged PEM according to the Fukuda criteria, while 19 did not.

Patients with PEM had higher FIS scores (p = 0.02), lower central systolic blood pressure (p = 0.02) and higher mental fatigue (p = 0.03). For a one-point increase in the mental fatigue component of the CFQ scale, the risk of PEM increases by 34%. For an sBPaortic increase of 1 mmHg, the risk of PEM decreases by 5%. For a one unit increase in sympathovagal balance, the risk of PEM increases by 330%.

Higher mental fatigue and sympathetic activity in rest are related to an increased risk of PEM, while higher central systolic blood pressure is related to a reduced risk of PEM. However, none of the between group differences were significant after FDR correction, and therefore conclusions should be treated with caution and replicated in further studies.

Source: Kujawski S, Słomko J, Hodges L, Pheby DFH, Murovska M, Newton JL, Zalewski P. Post-Exertional Malaise May Be Related to Central Blood Pressure, Sympathetic Activity and Mental Fatigue in Chronic Fatigue Syndrome Patients. J Clin Med. 2021 May 26;10(11):2327. doi: 10.3390/jcm10112327. PMID: 34073494. https://pubmed.ncbi.nlm.nih.gov/34073494/