The effects of 3-month supplementation with synbiotic on patient-reported outcomes, exercise tolerance, and brain and muscle metabolism in adult patients with post-COVID-19 chronic fatigue syndrome (STOP-FATIGUE): a randomized Placebo-controlled clinical trial

Abstract:

Purpose: Considering the observed gastrointestinal issues linked to post-COVID-19 myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), beneficially modulating the gut microbiota could offer a safe, cost-effective nutritional strategy. This trial aimed to evaluate the effects of medium-term synbiotic supplementation on patient-reported outcomes, exercise tolerance, and tissue metabolism in patients with post-COVID-19 ME/CFS.

Methods: Between September 2022 and December 2023, we investigated the impact of 3-month supplementation with a synbiotic mixture including L. rhamnosus DSM 32550, Humiome® L. plantarum DSM 34532, B. lactis DSM 32269, B. longum DSM 32946, fructooligosaccharides and zinc, on predetermined primary and secondary outcome measures in twenty six post-COVID-19 ME/CFS patients utilizing a parallel-group, randomized, placebo-controlled, double-blind design.

Results: Both the synbiotic and placebo intake resulted in a significant reduction in general fatigue after 3 months compared to the baseline values (P ≤ 0.05). This was accompanied by a significant interaction effect (time vs. treatment) for post-exercise malaise (P = 0.02), with synbiotic superior to placebo to attenuate post-exercise malaise. The synbiotic also demonstrated a significant advantage over placebo in increasing choline levels at the thalamus (P = 0.02), and creatine levels at left frontal white matter (P = 0.05) and left frontal grey matter (P = 0.04).

Conclusion: Taking the synbiotic mixture for three months improves tissue metabolism and mitigates clinical features of post-COVID-19 fatigue syndrome. The presented data show promise in addressing the widespread issue of ME/CFS following the COVID-19 pandemic; however, further validation is needed before endorsing the synbiotics within this clinical context. The study is registered at ClinicalTrials.gov (NCT06013072).

Source: Ranisavljev M, Stajer V, Todorovic N, Ostojic J, Cvejic JH, Steinert RE, Ostojic SM. The effects of 3-month supplementation with synbiotic on patient-reported outcomes, exercise tolerance, and brain and muscle metabolism in adult patients with post-COVID-19 chronic fatigue syndrome (STOP-FATIGUE): a randomized Placebo-controlled clinical trial. Eur J Nutr. 2024 Nov 26;64(1):28. doi: 10.1007/s00394-024-03546-0. PMID: 39592468. https://pubmed.ncbi.nlm.nih.gov/39592468/

Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterized by an elusive etiology and pathophysiology. This study aims to evaluate the pathological role of neuroinflammation in ME/CFS by conducting an exhaustive analysis of 65 observational studies.

Four neuroimaging techniques, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), and positron emission tomography (PET), were employed to comparatively assess brain regional structure, metabolite profiles, electrical activity, and glial activity in 1529 ME/CFS patients (277 males, 1252 females) and 1715 controls (469 males, 1246 females). Clinical characteristics, including sex, age, and fatigue severity, were consistent with established epidemiological patterns.

Regional alterations were most frequently identified in the cerebral cortex, with a notable focus on the frontal cortex. However, our meta-analysis data revealed a significant hypoactivity in the insular and thalamic regions, contrary to observed frequencies. These abnormalities, occurring in pivotal network hubs bridging reason and emotion, disrupt connections with the limbic system, contributing to the hallmark symptoms of ME/CFS.

Furthermore, we discuss the regions where neuroinflammatory features are frequently observed and address critical neuroimaging limitations, including issues related to inter-rater reliability. This systematic review serves as a valuable guide for defining regions of interest (ROI) in future neuroimaging investigations of ME/CFS

Source: Lee JS, Sato W, Son CG. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun Rev. 2023 Nov 26:103484. doi: 10.1016/j.autrev.2023.103484. Epub ahead of print. PMID: 38016575. https://www.sciencedirect.com/science/article/pii/S1568997223002185 (Full text)

Structural brain changes in patients with post-COVID fatigue: a prospective observational study

Summary:

Background: Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity.

Methods: We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18–69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5–9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue.

Findings: Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness.

Interpretation: Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications.

Source: Josephine Heine, et al. Structural brain changes in patients with post-COVID fatigue: a prospective observational study. The Lancet, VOLUME 58, 101874, APRIL 2023.  Published: February 27, 2023 DOI: https://doi.org/10.1016/j.eclinm.2023.101874 (Full text)

Cerebral perfusion in chronic fatigue syndrome and depression

Abstract:

BACKGROUND: Patients with chronic fatigue syndrome (CFS) and depressive illness share many, but not all, features.

AIMS: To test the hypothesis that patients with CFS have abnormal cerebral perfusion, that differs from that in patients with depressive illness.

METHOD: We recruited 30 patients with CFS who were not depressed, 12 depressed patients and 15 healthy volunteers. Regional cerebral perfusion at rest was assessed using region of interest (ROI) and voxel-based statistical parametric mapping (SPM) techniques.

RESULTS: On SPM analysis there was increased perfusion in the right thalamus, pallidum and putamen in patients with CFS and in those with depressive illness. CFS patients also had increased perfusion in the left thalamus. Depressed patients differed from those with CFS in having relatively less perfusion of the left prefrontal cortex. The results were similar on ROI analysis.

CONCLUSIONS: Abnormal cerebral perfusion patterns in CFS subjects who are not depressed are similar but not identical to those in patients with depressive illness. Thalamic overactivity may be a correlate of increased attention to activity in CFS and depression; reduced prefrontal perfusion in depression may be associated with the greater neuropsychological deficits in that disorder.

Comment in: Chronic fatigue syndrome and depression. [Br J Psychiatry. 2000]

 

Source: MacHale SM, Lawŕie SM, Cavanagh JT, Glabus MF, Murray CL, Goodwin GM, Ebmeier KP. Cerebral perfusion in chronic fatigue syndrome and depression. Br J Psychiatry. 2000 Jun;176:550-6. http://bjp.rcpsych.org/content/176/6/550.long (Full article)