Medial prefrontal cortex deficits correlate with unrefreshing sleep in patients with chronic fatigue syndrome

Abstract:

Unrefreshing sleep is a hallmark of chronic fatigue syndrome/myalgic encephalomyelitis (CFS). This study examined brain structure variations associated with sleep quality in patients with CFS. 38 patients with CFS (34.8 ± 10.1 years old) and 14 normal controls (NCs) (34.7 ± 8.4 years old) were recruited. All subjects completed the Hospital Anxiety and Depression Scale, Pittsburgh Sleep Quality Index (PSQI), and Chalder Fatigue Scale (CFQ) questionnaires. Brain MRI measures included global and regional grey and white matter volumes, magnetization transfer T1 weighted (MT-T1w) intensities, and T1 weighted (T1w) and T2 weighted spin echo signal intensities.

We performed voxel based group comparisons of these regional brain MRI measures and regressions of these measures with the PSQI and CFQ scales adjusted for age, anxiety and depression, and the appropriate global measure. In CFS patients, negative correlations were observed in the medial prefrontal cortex (mPFC) between PSQI and MT-T1w intensities (family-wise error corrected cluster, PFWE < 0.05) and between PSQI and T1w intensities (PFWE < 0.05). In the same mPFC location, both MT and T1w intensities were lower in CFS patients compared with NCs (uncorrected voxel P < 0.001).

This study is the first to report that brain structural differences are associated with unrefreshing sleep in CFS. This result refutes the suggestion that unrefreshing sleep is a misperception in CFS patients and further investigation of this symptom is warranted.

Source: Shan ZY, Kwiatek R, Burnet R, Del Fante P, Staines DR, Marshall-Gradisnik SM, Barnden LR. Medial prefrontal cortex deficits correlate with unrefreshing sleep in patients with chronic fatigue syndrome. NMR Biomed. 2017 Jun 29. doi: 10.1002/nbm.3757. [Epub ahead of print] http://onlinelibrary.wiley.com/doi/10.1002/nbm.3757/full

Further clues in the fight against chronic fatigue syndrome

New findings regarding the pathology of Chronic Fatigue Syndrome (CFS) are bringing Griffith University researchers closer to identifying the cause of this disabling illness.

This is the news from a team at the National Centre for Neuroimmunology and Emerging Diseases at the Menzies Health Institute Queensland.

Professors Marshall-Gradisnik and Don Staines and their research team have identified significant impairments in cellular function of people with CFS.

CFS — sometimes known as ME (myalgic encephalomyelitis) — is a complex illness characterized by impaired memory and concentration, metabolic, cardiac, gut and immune dysfunction and debilitating muscle pain and fatigue on exertion (also known as neuroimmune exhaustion).

It is estimated that the prevalence rate of CFS/ME worldwide is between 1 and 2 per cent.

“While the patho-mechanism of CFS/ME is unknown, these recent findings by NCNED researchers provide further evidence for the pathology of this illness,” says Professor Sonya Marshall-Gradisnik, who speaks as we approach International CFS Awareness Day on Thursday May 12.

Published in the Journal of Translational Medicine, the results report significant differences in intracellular signalling of cells with CFS patients.

“In this group, we see that dysfunctional signalling may contribute to impaired cell activity. These findings are consistent with our previous findings and align with the presentation of symptoms in patients,” says Professor Staines.

The current research findings build upon recent discoveries including novel identification of key genetic changes in cells of the immune system.

The NCNED — internationally recognised for research into CFS/ME — will present a seminar on current research findings on this disease on International CFS/ME Awareness Day, Thursday May 12 at Griffith University, Gold Coast Campus, commencing 1pm, location G17, Lecture theatre 3.

Griffith University will also be illuminating the Griffith Health Centre in blue to further help raise awareness for CFS/ME.

Journal Reference: Teilah Kathryn Huth, Donald Staines, Sonya Marshall-Gradisnik. ERK1/2, MEK1/2 and p38 downstream signalling molecules impaired in CD56dimCD16 and CD56brightCD16dim/− natural killer cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. Journal of Translational Medicine, 2016; 14 (1) DOI: 10.1186/s12967-016-0859-z

 

Source: Griffith University. “Further clues in the fight against chronic fatigue syndrome.” ScienceDaily. ScienceDaily, 10 May 2016. https://www.sciencedaily.com/releases/2016/05/160510093906.htm

 

New light shed on cause of chronic fatigue syndrome

New research findings may shed new light on the potential cause of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME).

Researchers from Griffith University’s National Centre for Neuroimmunology and Emerging Diseases (NCNED) — part of the new Menzies Health Institute Queensland — have uncovered significant factors contributing to the pathology of this illness.

The results reveal genetic changes in important receptors associated with immunological and cellular function and contribute to the development of this complex illness.

“These findings have been achieved through a team effort involving researchers, patients, funding bodies, clinicians and the support of Griffith University and the Queensland Government,” say chief investigators Professor Sonya Marshall-Gradisnik and Professor Donald Staines.

Co-researcher and consultant immunologist Professor Pete Smith said that important signalling mechanisms are disrupted as a result of these genetic changes involving the detection and response to threats.

“These are primitive genes that are involved in many cellular signals in the brain, gut, cardiovascular and immune systems, as well as in the mediation of pain.”

These research findings coincide with International Neuroimmune Awareness week commencing Monday 11 May.

The Griffith Health Centre on the university’s Gold Coast campus is being lit up each evening from 10 -12 May to raise awareness of neurological conditions such as CFS/ME as well as other conditions such as Fibromyalgia and Gulf War Syndrome.

“The lighting up of the Griffith Health Centre signifies Griffith’s commitment to the CFS patient community and our team approach to this research,” says Pro-Vice Chancellor (Health) Professor Allan Cripps.

CFS/ME is a highly debilitating disorder characterized by profound fatigue, muscle and joint pain, cerebral symptoms of impaired memory and concentration, impaired cardiovascular function, gut disorder and sensory dysfunction such as noise intolerance and balance disturbance. Many cases can continue for months or years. It is believed to affect around 250,000 Australians.

The research findings are to be presented at an international conference in London later this month.

Journal Reference: Sonya Marshall-Gradisnik, Donald Staines, Pete Smith, Bernd Nilius, Ekua Brenu, Sandra Ramos. Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. Immunology and Immunogenetics Insights, 2015; 1 DOI: 10.4137/III.S25147

 

Source: Griffith University. “New light shed on cause of chronic fatigue syndrome.” ScienceDaily. ScienceDaily, 11 May 2015. https://www.sciencedaily.com/releases/2015/05/150511172755.htm 

 

A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Abstract:

BACKGROUND: Chronic Fatigue Syndrome, also known as Myalgic Encephalomyelitis (CFS/ME) is a debilitating condition of unknown aetiology. It is characterized by a range of physiological effects including neurological, sensory and motor disturbances. This study examined candidate genes for the above clinical manifestations to identify single nucleotide polymorphism (SNP) alleles associated with CFS/ME compared with healthy controls.

METHODS: DNA was extracted and whole genome genotyping was performed using the HumanOmniExpress BeadChip array. Gene families for transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors, and acetylcholinesterase were targeted. The frequency of each SNP and their association between CFS/ME and healthy controls was examined using Fisher’s exact test, and to adjust for multiple testing, False Detection Rate (FDR) and Bonferroni corrections were applied (p < 0.05).

RESULTS: The study included 172 participants, consisting of 95 Fukuda defined CFS/ME patients (45.8 ± 8.9; 69 % female) and 77 healthy controls (42.3 ± 10.3; 63 % female). A total of 950 SNPs were included for analysis. 60 significant SNPs were associated with CFS/ME compared with healthy controls. After applying FDR and Bonferroni corrections, SNP rs2322333 in adrenergic receptor α1 (ADRA1A) was higher in CFS/ME compared with healthy controls (45.3 % vs. 23.4 %; p = 0.059). The genotype class that was homozygous minor (AA) was substantially lower in CFS/ME compared with healthy controls (4.2 % vs. 24.7 %).

CONCLUSIONS: This study reports for the first time the identification of ADRA1A and a possible association between CFS/ME and genotype classes. Further examination of the functional role of this class of adrenergic receptors may elucidate the cause of particular clinical manifestations observed in CFS/ME

 

Source: Johnston S, Staines D, Klein A, Marshall-Gradisnik S. A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. BMC Med Genet. 2016 Nov 11;17(1):79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105265/ (Full article)

 

Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

OBJECTIVE: The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients.

METHODS: A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software.

RESULTS: Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group.

CONCLUSION: This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

© The Author(s) 2016.

 

Source: Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res. 2016 Nov 10. pii: 0300060516671622. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/27834303

 

Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels

Abstract:

Transient receptor potential melastatin subfamily 3 (TRPM3) ion channels play a role in calcium (Ca2+ ) cell signalling. Reduced TRPM3 protein expression has been identified in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients. However, the significance of TRPM3 and association with intracellular Ca2+ mobilization has yet to be determined.

Fifteen CFS/ME patients (mean age 48·82 ± 9·83 years) and 25 healthy controls (mean age 39·2 ± 12·12 years) were examined. Isolated natural killer (NK) cells were labelled with fluorescent antibodies to determine TRPM3, CD107a and CD69 receptors on CD56dim CD16+ NK cells and CD56bright CD16dim/- NK cells. Ca2+ flux and NK cytotoxicity activity was measured under various stimulants, including pregnenolone sulphate (PregS), thapsigargin (TG), 2-aminoethoxydiphenyl borate (2APB) and ionomycin.

Unstimulated CD56bright CD16dim/- NK cells showed significantly reduced TRPM3 receptors in CFS/ME compared with healthy controls (HC). Ca2+ flux showed no significant difference between groups. Moreover, PregS-stimulated CD56bright CD16dim/- NK cells showed a significant increase in Ca2+ flux in CFS/ME patients compared with HC. By comparison, unstimulated CD56dim CD16+ NK cells showed no significant difference in both Ca2+ flux and TRPM3 expression. PregS-stimulated CD56dim CD16+ NK cells increased TRPM3 expression significantly in CFS/ME, but this was not associated with a significant increase in Ca2+ flux.

Furthermore, TG-stimulated CD56dim CD16+ NK cells increased K562 cell lysis prior to PregS stimulation in CFS/ME patients compared with HC. Differential expression of TRPM3 and Ca2+ flux between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in CFS/ME.

© 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

 

Source: Nguyen T, Johnston S, Clarke L, Smith P, Staines D, Marshall-Gradisnik S. Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels. Clin Exp Immunol. 2017 Feb;187(2):284-293. doi: 10.1111/cei.12882. Epub 2016 Nov 23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217865/ (Full article)

 

Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

Abstract:

BACKGROUND: The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME.

METHOD: Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years).

RESULTS: The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls.

CONCLUSIONS: In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.

 

Source: Chacko A, Staines DR, Johnston SC, Marshall-Gradisnik SM. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Gene Regul Syst Bio. 2016 Aug 28;10:85-93. doi: 10.4137/GRSB.S40036. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003121/ (Full article)

 

Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

Abstract:

Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated.

The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs.

A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results.

 

Source: Huth TK, Brenu EW, Staines DR, Marshall-Gradisnik SM. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Gene Regul Syst Bio. 2016 Jun 19;10:43-9. doi: 10.4137/GRSB.S39861. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913894/ (Full article)

 

Epidemiological characteristics of chronic fatigue syndrome/myalgic encephalomyelitis in Australian patients

Abstract:

BACKGROUND: No epidemiological investigations have previously been conducted in Australia according to the current clinical definitions of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). The aim of this study was to describe sociodemographic and illness characteristics of Australian patients with CFS/ME.

METHODS: A cross-sectional survey on the medical history of patients enrolled in an Australian CFS/ME research database between April 2013 and April 2015. Participants were classified according to Fukuda criteria and International Consensus Criteria.

RESULTS: A total of 535 patients diagnosed with CFS/ME by a primary care physician were identified. The mean age of all patients was 46.4 years (standard deviation 12.0); the majority were female (78.61%), Caucasian, and highly educated. Of these, 30.28% met Fukuda criteria. A further 31.96% met both Fukuda criteria and International Consensus Criteria. There were 14.58% reporting chronic fatigue but did not meet criteria for CFS/ME and 23.18% were considered noncases due to exclusionary conditions. Within those meeting CFS/ME criteria, the most common events prior to illness included cold or flu, gastrointestinal illness, and periods of undue stress. Of the 60 symptoms surveyed, fatigue, cognitive, and short-term memory symptoms, headaches, muscle and joint pain, unrefreshed sleep, sensory disturbances, muscle weakness, and intolerance to extremes of temperature were the most commonly occurring symptoms (reported by more than two-thirds of patients). Significant differences in symptom occurrence between Fukuda- and International Consensus Criteria-defined cases were also identified.

CONCLUSION: This is the first study to summarize sociodemographic and illness characteristics of a cohort of Australian CFS/ME patients. This is vital for identifying potential risk factors and predictors associated with CFS/ME and for guiding decisions regarding health care provision, diagnosis, and management.

 

Source: Johnston SC, Staines DR, Marshall-Gradisnik SM. Epidemiological characteristics of chronic fatigue syndrome/myalgic encephalomyelitis in Australian patients. Clin Epidemiol. 2016 May 17;8:97-107. doi: 10.2147/CLEP.S96797. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878662/ (Full article)

 

Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients

Abstract:

BACKGROUND: Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19(+) B cells, CD56(bright) and CD56(dim) cell populations from CFS/ME patients.

RESULTS: TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56(bright) TRPM3 35.72 % ± 7.37; CD56(dim) 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19(+) B cells (1.56 ± 0.191) and CD56(bright) NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19(+) B lymphocytes. CD56(bright) NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients.

CONCLUSIONS: The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.

 

Source: Nguyen T, Staines D, Nilius B, Smith P, Marshall-Gradisnik S. Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients. Biol Res. 2016 May 31;49(1):27. doi: 10.1186/s40659-016-0087-2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888729/ (Full article)