Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

Abstract:

BACKGROUND: The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME.

METHOD: Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years).

RESULTS: The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls.

CONCLUSIONS: In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.

 

Source: Chacko A, Staines DR, Johnston SC, Marshall-Gradisnik SM. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Gene Regul Syst Bio. 2016 Aug 28;10:85-93. doi: 10.4137/GRSB.S40036. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003121/ (Full article)

 

Elevated apoptotic cell population in patients with chronic fatigue syndrome: the pivotal role of protein kinase RNA

Abstract:

OBJECTIVES: A prominent feature of chronic fatigue syndrome (CFS) is a disordered immune system. Recent evidence indicates that induction of apoptosis might be mediated in a dysregulated immune system by the upregulation of growth inhibitory cytokines. Therefore, the purpose of this study was to evaluate the apoptotic cell population, interferon-alpha (IFN-alpha) and the IFN-induced protein kinase RNA (PKR) gene transcripts in peripheral blood lymphocytes (PBL) of CFS individuals, as compared to healthy controls.

SUBJECTS AND METHODS: PBL were isolated from CFS (n = 29) and healthy control individuals (n = 15) and subjected to quantitative analysis of apoptotic cell population and cell cycle progression by flow cytometry. Quantitative competitive polymerase chain reaction (Q/C PCR) and Western blot analysis were used to assess the levels of PKR mRNA and protein in control and CFS individuals. In addition, circulating IFN-alpha was measured by ELISA assay.

RESULTS: Increased apoptotic cell population was observed in CFS individuals, as compared to healthy controls (26.6 +/- 12.9% and 9.9 +/- 4.2%, respectively). The increased apoptotic subpopulation in CFS individuals was accompanied by an abnormal cell arrest in the S phase and the G2/M boundary of the cell cycle as compared to the control group (8.6 +/- 1.2 to 22.8 +/- 2.4 and 3.6 +/- 0.82 to 24.3 +/- 3.4, respectively). In addition, CFS individuals exhibited enhanced PKR mRNA and protein levels (mean basal level 3538 +/- 1050 and 2.7 +/- 0.26, respectively) as compared to healthy controls (mean basal level 562 +/- 162 and 0.89 +/- 0.18, respectively). In 50% of the CFS samples (n = 29) treated with 2-aminopurine (2-AP) (a potent inhibitor of PKR) the apoptotic population was reduced by more then 50%.

CONCLUSIONS: PKR-mediated apoptosis in CFS individuals may contribute to the pathogenesis and the fatigue symptomatology associated with CFS.

Comment in: Cortisol deficiency may account for elevated apoptotic cell population in patients with chronic fatigue syndrome. [J Intern Med. 1999]

 

Source: Vojdani A, Ghoneum M, Choppa PC, Magtoto L, Lapp CW. Elevated apoptotic cell population in patients with chronic fatigue syndrome: the pivotal role of protein kinase RNA. J Intern Med. 1997 Dec;242(6):465-78. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.1997.tb00019.x/epdf (Full article)