Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS)

Abstract:

We proposed that cerebrospinal fluid would provide objective evidence for disrupted brain metabolism in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). The concept of postexertional malaise (PEM) with disabling symptom exacerbation after limited exertion that does not respond to rest is a diagnostic criterion for ME/CFS. We proposed that submaximal exercise provocation would cause additional metabolic perturbations.

The metabolomic and lipidomic constituents of cerebrospinal fluid from separate nonexercise and postexercise cohorts of ME/CFS and sedentary control subjects were contrasted using targeted mass spectrometry (Biocrates) and frequentist multivariate general linear regression analysis with diagnosis, exercise, gender, age and body mass index as independent variables. ME/CFS diagnosis was associated with elevated serine but reduced 5-methyltetrahydrofolate (5MTHF).

One carbon pathways were disrupted. Methylation of glycine led to elevated sarcosine but further methylation to dimethylglycine and choline was decreased. Creatine and purine intermediates were elevated. Transaconitate from the tricarboxylic acid cycle was elevated in ME/CFS along with essential aromatic amino acids, lysine, purine, pyrimidine and microbiome metabolites. Serine is a precursor of phospholipids and sphingomyelins that were also elevated in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls.

The findings differ from prior hypometabolic findings in ME/CFS plasma. The novel findings generate new hypotheses regarding serine-folate-glycine one carbon and serine-phospholipid metabolism, elevation of end products of catabolic pathways, shifts in folate, thiamine and other vitamins with exercise, and changes in sphingomyelins that may indicate myelin and white matter dysfunction in ME/CFS.

Source: Baraniuk JN. Cerebrospinal fluid metabolomics, lipidomics and serine pathway dysfunction in myalgic encephalomyelitis/chronic fatigue syndroome (ME/CFS). Sci Rep. 2025 Mar 3;15(1):7381. doi: 10.1038/s41598-025-91324-1. PMID: 40025157. https://www.nature.com/articles/s41598-025-91324-1 (Full text)

Exertional Exhaustion (Post-Exertional Malaise, PEM) Evaluated by the Effects of Exercise on Cerebrospinal Fluid Metabolomics–Lipidomics and Serine Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract

Post-exertional malaise (PEM) is a defining condition of myalgic encephalomyelitis (ME/CFS). The concept requires that a provocation causes disabling limitation of cognitive and functional effort (“fatigue”) that does not respond to rest. Cerebrospinal fluid was examined as a proxy for brain metabolite and lipid flux and to provide objective evidence of pathophysiological dysfunction. Two cohorts of ME/CFS and sedentary control subjects had lumbar punctures at baseline (non-exercise) or after submaximal exercise (post-exercise). Cerebrospinal fluid metabolites and lipids were quantified by targeted Biocrates mass spectrometry methods.
Significant differences between ME/CFS and control, non-exercise vs. post-exercise, and by gender were examined by multivariate general linear regression and Bayesian regression methods. Differences were found at baseline between ME/CFS and control groups indicating disease-related pathologies, and between non-exercise and post-exercise groups implicating PEM-related pathologies.
A new, novel finding was elevated serine and its derivatives sarcosine and phospholipids with a decrease in 5-methyltetrahydrofolate (5MTHF), which suggests general dysfunction of folate and one-carbon metabolism in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. In general, the frequentist and Bayesian analyses generated complementary but not identical sets of analytes that matched the metabolic modules and pathway analysis. Cerebrospinal fluid is unique because it samples the choroid plexus, brain interstitial fluid, and cells of the brain parenchyma.
The quantitative outcomes were placed into the context of the cell danger response hypothesis to explain shifts in serine and phospholipid synthesis; folate and one-carbon metabolism that affect sarcosine, creatine, purines, and thymidylate; aromatic and anaplerotic amino acids; glucose, TCA cycle, trans-aconitate, and coenzyme A in energy metabolism; and vitamin activities that may be altered by exertion. The metabolic and phospholipid profiles suggest the additional hypothesis that white matter dysfunction may contribute to the cognitive dysfunction in ME/CFS.
Source: Baraniuk JN. Exertional Exhaustion (Post-Exertional Malaise, PEM) Evaluated by the Effects of Exercise on Cerebrospinal Fluid Metabolomics–Lipidomics and Serine Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Molecular Sciences. 2025; 26(3):1282. https://doi.org/10.3390/ijms26031282 https://www.mdpi.com/1422-0067/26/3/1282 (Full text)

The Potential Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Post-COVID-19 Condition: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog

Abstract:

Post-COVID-19 condition (commonly known as Long COVID) is a heterogeneous clinical condition in which Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and brain fog stand out among the different clinical symptoms and syndromes. Cerebral metabolic alterations and neuroendocrine disorders seem to constitute an important part of the pathophysiology of Post-COVID-19 condition (PCC).

Given the substantial lack of specific drugs and effective therapeutic strategies, hypothalamic phospholipid liposomes, which have been on the market for several years as adjuvant therapy for cerebral metabolic alterations resulting from neuroendocrine disorders, might represent a potential option in an overall therapeutic strategy that aims to control PCC-associated symptoms and syndromes. Their pharmacological mechanisms and clinical effects strongly support their potential effectiveness in PCC. Our initial clinical experience seems to corroborate this rationale. Further controlled clinical research is warranted in order to verify this hypothesis.

Source: Menichetti F. The Potential Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Post-COVID-19 Condition: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog. J Clin Med. 2023 Aug 23;12(17):5478. doi: 10.3390/jcm12175478. PMID: 37685544; PMCID: PMC10488182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488182/ (Full text)

Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Plasmalogens (Pls) are lipids containing a vinyl-ether bond in their glycerol backbone
  • Pls have antioxidant properties and are important for curved membrane assemblies
  • Post-COVID-19 symptoms are highly prevalent and share several features with ME/CFS
  • Pls depletion is a shared biological hallmark of ME/CFS and acute COVID-19 syndrome
  • Pls replacement is a promising tool against neuroinflammation in these two conditions

Abstract:

After five waves of COVID-19 outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties (“brain fog”), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions.

Of great interest, recent evidence revealed a significant reduction of plasmalogens contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms.

Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.

Source: Chaves AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull. 2023 Jul 7:110702. doi: 10.1016/j.brainresbull.2023.110702. Epub ahead of print. PMID: 37423295. https://www.sciencedirect.com/science/article/pii/S0361923023001272?via%3Dihub (Full text)

The Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Long Covid: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog

Abstract:

Long Covid is a heterogeneous clinical condition in which Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and brain fog stand out among the different clinical symptoms and syndromes. The cerebral metabolic alterations and neuroendocrine disorders seem to constitute an important part of Long Covid.

Given the substantial lack of drugs and effective therapeutic strategies, hypothalamic phospholipid liposomes which have been on the market for several years as adjuvant therapy of cerebral metabolic alterations resulting from neuroendocrine disorders, can be taken into consideration in an overall therapeutic strategy that aims to control the Long Covid associated symptoms and syndromes. Their pharmacological mechanisms and clinical effects strongly support their usefulness in Long Covid. Our initial clinical experience corroborates this rationale. Further research is imperative in order to obtain robust clinical evidence.

Source: Menichetti, F. The Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Long Covid: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog. Preprints.org 2023, 2023070005. https://doi.org/10.20944/preprints202307.0005.v1 https://www.preprints.org/manuscript/202307.0005/v1 (Full text available as PDF file)