Aberrations in the Cross-Talks Among Redox, Nuclear Factor-κB, and Wnt/β-Catenin Pathway Signaling Underpin Myalgic Encephalomyelitis and Chronic Fatigue Syndrome

Abstract:

There is evidence that chronic fatigue spectrum disorders (CFAS-D) including Myalgic Encephalomyelitis (ME), chronic fatigue syndrome (CFS) and chronic fatigue with physiosomatic symptoms including when due to comorbid medical disease are characterized by neuroimmune and neuro-oxidative biomarkers.

The present study was performed to delineate the protein-protein interaction (PPI) network of CFAS-D and to discover the pathways, molecular patterns and domains enriched in their PPI network.

We performed network, enrichment and annotation analysis using differentially expressed proteins and metabolics, which were established in CFAS-D patients.

PPI network analysis revealed that the backbone of the highly connective CFAS-D network comprises NFKB1, CTNNB1, ALB, peroxides, NOS2, TNF, and IL6, and that the network comprises interconnected immune-oxidative-nitrosative and Wnt/catenin subnetworks.

MultiOmics enrichment analysis shows that the CFAS-D network is highly significantly associated with cellular (antioxidant) detoxification, hydrogen peroxide metabolic process, peroxidase and oxidoreductase activity, IL10 anti-inflammatory signaling, and neurodegenerative, canonical Wnt, the catenin complex, cadherin domains, cell-cell junctions and TLR2/4 pathways; and the transcription factors NF-κB and RELA.

The top-10 DOID annotations of the CFAS-D network include four intestinal, three immune system disorders, cancer and infectious disease.

Custom GO term annotation analysis revealed that the CFAS-D network is associated with a response to a toxic substance, lipopolysaccharides, bacterium or virus.

In conclusion, CFAS-D may be triggered by a variety of stimuli and their effects are mediated by aberrations in the cross-talks between redox, NF-κB, and Wnt/catenin signaling pathways leading to dysfunctions in multicellular organismal homeostatic processes.

Source: Michael Maes, Marta Kubera and Magdalena Kotańska. Aberrations in the Cross-Talks Among Redox, Nuclear Factor-κB, and Wnt/β-Catenin Pathway Signaling Underpin Myalgic Encephalomyelitis and Chronic Fatigue Syndrome. Frontiers in Psychiatry 13: 822382. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.822382/full  (Full text)

Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

BACKGROUND: There is evidence that myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by activation of immune, inflammatory, oxidative and nitrosative stress (IO&NS) pathways. The present study was carried out in order to examine whether ME/CFS is accompanied by increased levels of plasma peroxides and serum oxidized LDL (oxLDL) antibodies, two biomarkers of oxidative stress.

MATERIAL/METHODS: Blood was collected from 56 patients with ME/CFS and 37 normal volunteers. Severity of ME/CFS was measured using the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale.

RESULTS: Plasma peroxide concentrations were significantly higher in patients with ME/CFS than in normal controls. There was a trend towards significantly higher serum oxLDL antibodies in ME/CFS than in controls. Both biomarkers contributed significantly in discriminating between patients with ME/CFS and normal controls. Plasma peroxide and serum oxLDL antibody levels were both significantly related to one of the FF symptoms.

CONCLUSIONS: The results show that ME/CFS is characterized by increased oxidative stress.

 

Source: Maes M, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Sci Monit. 2011 Apr;17(4):SC11-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539515/ (Full article)