Pilot Study of Natural Killer Cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Multiple Sclerosis

Abstract:

Patients with chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and multiple sclerosis (MS) suffer from debilitating fatigue which is not alleviated by rest. In addition to the fatigue-related symptoms suffered by patients with CFS/ME and MS, dysfunction of the immune system and, in particular, reduced natural killer (NK) cell cytotoxic activity has also been reported in CFS/ME and MS. The purpose of this pilot study was to compare NK cellular mechanisms in patients with CFS/ME and MS to investigate potential dysfunctions in the NK cell activity pathway. Flow cytometry protocols assessed CD56(dim) CD16(+) and CD56(bright) CD16(+/-) NK cell expression of adhesion molecules, NK activating and inhibiting receptors, NK cell maturation and lytic proteins.

All participants in this study were female and included 14 patients with CFS/ME, nine patients with MS and 19 non-fatigued controls. The patient groups and the non-fatigued controls were not taking any immunosuppressive or immune-enhancing medications. In the MS cohort, KIR2DL5 was significantly increased on CD56(bright) CD16(+/-) NK cells and expression of CD94 was significantly increased on CD56(dim) CD16(+) NK cells in comparison with the controls. Co-expression of CD57 and perforin was significantly increased on CD56(dim) CD16(+) NK cells from patients with CFS/ME compared to the MS and non-fatigued control participants.

The results from this pilot study suggest that NK cells from patients with CFS/ME and MS may have undergone increased differentiation in response to external stimuli which may affect different mechanisms in the NK cell cytotoxic activity pathway.

© 2015 The Authors. Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of The Foundation for the Scandinavian Journal of Immunology.

 

Source: Huth TK, Brenu EW, Ramos S, Nguyen T, Broadley S, Staines D, Marshall-Gradisnik S. Pilot Study of Natural Killer Cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Multiple Sclerosis. Scand J Immunol. 2016 Jan;83(1):44-51. doi: 10.1111/sji.12388. http://onlinelibrary.wiley.com/wol1/doi/10.1111/sji.12388/full (Full article)

 

Acute psychosocial stress-mediated changes in the expression and methylation of perforin in chronic fatigue syndrome

Abstract:

Perforin (PRF1) is essential for immune surveillance and studies report decreased perforin in chronic fatigue syndrome (CFS), an illness potentially associated with stress and/or infection. We hypothesize that stress can influence regulation of PRF1 expression, and that this regulation will differ between CFS and non-fatigued (NF) controls.

We used the Trier Social Stress Test (TSST) as a standardized acute psychosocial stress, and evaluated its effect on PRF1 expression and methylation in CFS (n = 34) compared with NF (n = 47) participants. During the TSST, natural killer (NK) cells increased significantly in both CFS (P = <0.0001) and NF subjects (P = <0.0001). Unlike previous reports, there was no significant difference in PRF1 expression at baseline or during TSST between CFS and NF. However, whole blood PRF1 expression increased 1.6 fold during the TSST in both CFS (P = 0.0003) and NF (P = <0.0001). Further, the peak response immediately following the TSST was lower in CFS compared with NF (P = 0.04).

In addition, at 1.5 hours post TSST, PRF1 expression was elevated in CFS compared with NF (whole blood, P = 0.06; PBMC, P = 0.02). Methylation of seven CpG sites in the methylation sensitive region of the PRF1 promoter ranged from 38%-79% with no significant differences between CFS and NF. Although, the average baseline methylation of all seven CpG sites did not differ between CFS and NF groups, it showed a significant negative correlation with PRF1 expression at all TSST time points in both CFS (r = -0.56, P = <0.0001) and NF (r = -0.38, P = <0.0001). Among participants with high average methylation (≥65%), PRF1 expression was significantly lower in CFS than NF subjects immediately following TSST.

These findings suggest methylation could be an important epigenetic determinant of inter-individual differences in PRF1 expression and that the differences in PRF1 expression and methylation between CFS and NF in the acute stress response require further investigation.

 

Source: Falkenberg VR, Whistler T, Murray JR, Unger ER, Rajeevan MS. Acute psychosocial stress-mediated changes in the expression and methylation of perforin in chronic fatigue syndrome. Genet Epigenet. 2013 Jan 28;5:1-9. doi: 10.4137/GEG.S10944. ECollection 2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222335/ (Full article)

 

Chronic fatigue syndrome is associated with diminished intracellular perforin

Abstract:

Chronic fatigue syndrome (CFS) is an illness characterized by unexplained and prolonged fatigue that is often accompanied by abnormalities of immune, endocrine and cognitive functions. Diminished natural killer cell cytotoxicity (NKCC) is a frequently reported finding. However, the molecular basis of this defect of in vitro cytotoxicy has not been described.

Perforin is a protein found within intracellular granules of NK and cytotoxic T cells and is a key factor in the lytic processes mediated by these cells. Quantitative fluorescence flow cytometry was used to the intracellular perforin content in CFS subjects and healthy controls.

A significant reduction in the NK cell associated perforin levels in samples from CFS patients, compared to healthy controls, was observed. There was also an indication of a reduced perforin level within the cytotoxic T cells of CFS subjects, providing the first evidence, to our knowledge, to suggest a T cell associated cytotoxic deficit in CFS. Because perforin is important in immune surveillance and homeostasis of the immune system, its deficiency may prove to be an important factor in the pathogenesis of CFS and its analysis may prove useful as a biomarker in the study of CFS.

 

Source: Maher KJ, Klimas NG, Fletcher MA. Chronic fatigue syndrome is associated with diminished intracellular perforin. Clin Exp Immunol. 2005 Dec;142(3):505-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440524/ (Full article)