Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction

Abstract:

The pathogenesis of exercise intolerance and persistent fatigue which can follow an infection with the SARS-CoV-2 virus (“long COVID”) is not fully understood. Cases were recruited from a long COVID clinic (N = 32; 44 ± 12 years; 10 (31%) men), and age-/sex-matched healthy controls (HC) (N = 19; 40 ± 13 years; 6 (32%) men) from University College London staff and students.

We assessed exercise performance, lung and cardiac function, vascular health, skeletal muscle oxidative capacity, and autonomic nervous system (ANS) function. Key outcome measures for each physiological system were compared between groups using potential outcome means (95% confidence intervals) adjusted for potential confounders. Long COVID participant outcomes were compared to normative values.

When compared to HC, cases exhibited reduced oxygen uptake efficiency slope (1847 (1679, 2016) vs. 2176 (1978, 2373) mL/min, p = 0.002) and anaerobic threshold (13.2 (12.2, 14.3) vs. 15.6 (14.4, 17.2) mL/kg/min, p < 0.001), and lower oxidative capacity, measured using near infrared spectroscopy (τ: 38.7 (31.9, 45.6) vs. 24.6 (19.1, 30.1) s, p = 0.001). In cases, ANS measures fell below normal limits in 39%.

Long COVID is associated with reduced measures of exercise performance and skeletal muscle oxidative capacity in the absence of evidence of microvascular dysfunction, suggesting mitochondrial pathology. There was evidence of attendant ANS dysregulation in a significant proportion. These multisystem factors might contribute to impaired exercise tolerance in long COVID sufferers.

Source: Jamieson A, Al Saikhan L, Alghamdi L, Hamill Howes L, Purcell H, Hillman T, Heightman M, Treibel T, Orini M, Bell R, Scully M, Hamer M, Chaturvedi N, Montgomery H, Hughes AD, Astin R, Jones S. Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction. Physiol Rep. 2024 Feb;12(3):e15940. doi: 10.14814/phy2.15940. PMID: 38346773; PMCID: PMC10861355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861355/ (Full text)

Cardiorespiratory abnormalities in ICU survivors of COVID-19 with Post-acute Sequelae of SARS-CoV-2 infection are unrelated to invasive mechanical ventilation

Abstract:

Post-acute Sequelae of SARS-CoV-2 infection (PASC) often leads to exertional intolerance and reduced exercise capacity, particularly in individuals previously admitted to an intensive care unit (ICU). However, the impact of invasive mechanical ventilation (IMV) on PASC-associated cardiorespiratory abnormalities during exercise remains poorly understood.

This single-center, cross-sectional study aimed to gather knowledge on this topic. Fifty-two patients with PASC recruited ~6 months after ICU discharge were clustered based on their need for IMV (PASC+IMV, n=27) or non-invasive support therapy (PASC+NIS, n=25). Patients underwent pulmonary function and cardiopulmonary exercise testing (CPX), and were compared to a reference group (CONTROL, n=19) comprising individuals of both sexes with similar age, comorbidities, and physical activity levels, but without a history of COVID-19 illness.

Individuals with PASC, irrespective of support therapy, presented with higher rates of cardiorespiratory abnormalities than CONTROL, especially dysfunctional breathing patterns, dynamic hyperinflation, reduced oxygen uptake and oxygen pulse, and blunted heart rate recovery (all P<0.05). Only the rate of abnormal oxygen pulse was greater among PASC+IMV than PASC+NIS (P=0.05). Mean estimates for all CPX variables were comparable between PASC-IMV and PASC-NIS (all P>0.05).

These findings indicate significant involvement of both central and peripheral factors, leading to exertional intolerance in individuals with PASC previously admitted to the ICU, regardless of their need for IMV.

Source: Longobardi I, Prado DMLD, de Andrade DCO, Goessler KF, de Oliveira Júnior GN, Azevedo RA, Leitão AE, Santos JVP, de Sá Pinto AL, Gualano B, Roschel H. Cardiorespiratory abnormalities in ICU survivors of COVID-19 with Post-acute Sequelae of SARS-CoV-2 infection are unrelated to invasive mechanical ventilation. Am J Physiol Heart Circ Physiol. 2024 Feb 9. doi: 10.1152/ajpheart.00073.2024. Epub ahead of print. PMID: 38334972. https://pubmed.ncbi.nlm.nih.gov/38334972/ (Full study available as PDF file)

Exercise capacity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) treated with long-term pyridostigmine

Abstract:

Background: The pathophysiology underlying exertional intolerance in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remains poorly understood. Previously, a single-dose of 60 mg pyridostigmine, a reversible acetylcholinesterase inhibitor, was found to acutely improve aerobic capacity (Joseph, P. et al. Chest 2022; 162:1116–26).

Aims: To build upon these prior findings, this study aimed to evaluate the long-term effect (>1 month) of pyridostigmine treatment on exercise intolerance in ME/CFS.

Methods: Between 2017-2022, patients who met the National Academy of Medicine criteria for ME/CFS, and had a minimum of two clinical, constant load, submaximal exercise tests (Shape Medical System, MN) were evaluated. Patients who began pyridostigmine after their baseline test were considered the treatment group. Measurements were taken at baseline (T0) and most recent follow-up (T1).

Results: At the follow-up evaluation (690 ± 547 days), the treatment group (n=37, dose range: 24-360mg/d) demonstrated a significant increase in oxygen uptake efficiency slope (OUES) (T0: 1.82 ± 0.56, T1: 1.98 ± 0.53; p=0.044) and pulmonary vascular capacitance (PVCAP) (T0: 486.19 ± 169.89 ml*mmHg, T1: 540.03 ± 170.59 ml*mmHg; p=0.040). These differences were not observed in the control group (n=16) OUES (T0: 1.62 ± 0.40, T1: 1.77 ± 0.47; p=0.268) and PVCAP (T0: 446.94 ± 144.80 ml*mmHg, T1: 465.81 ± 124.34 ml*mmHg; p=0.590).

Conclusion: Long-term treatment with pyridostigmine improved aerobic capacity in ME/CFS as demonstrated by an increase in OUES, mediated by improvements in central hemodynamics (PVCAP).

Source: Johanna SquiresSarra Al-ZayerDavid Systrom. Exercise capacity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) treated with long-term pyridostigmine.

ME/CFS Pathophysiology Investigated by Invasive Cardiopulmonary Exercise Testing and Autonomic Function Testing

Abstract

Introduction: Mechanisms underlying exercise and orthostatic intolerance in myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS) have been uncovered by invasive cardiopulmonary exercise testing (iCPET) and
autonomic function testing (AFT), but the relationships between the two are not known. This study aims to determine
if there is overlap of cardiovascular and respiratory pathophysiology in patients who have undergone both
tests.

Methods: Between January 2017 and April 2022, 62 patients were identified with a contemporary iCPET and
AFT. Key variables from the iCPET included peak oxygen uptake (pVO2), cardiac output (pQc), right atrial pressure
(pRAP), and systemic oxygen extraction (Ca-vOy/Hgb) at peak exercise. Key variables from the autonomic testing
included epidermal and sweat gland small fiber neurite density, electrochemical skin conductance, and change in
heart rate (AH) and end tidal carbon dioxide (AETCO2) from supine to upright during the tilt table test
(TTT).

Results: All 62 patients demonstrated preload failure (pRAP < 6.5mmHg). Of this group, 54 patients (87.1%) fulfilled NAM criteria for ME/CFS, with 32 testing positive (59.3%) for small fiber neuropathy (SFN) using either morphological and/or functional testing. Significant correlations were found between pVOg and both AH (r=-0.439. P<0.05) and AETCO, (r=0.474, P<0.05) during TTT. The same tilt table variables were found to be significantly correlated with pQc (r=-0.365, P<0.05 and r=0.351, P<0.05) from the iCPET. It should be noted that 8 of the ME/CFS SFN patients (25%) fulfilled diagnostic criteria for postural orthostatic tachycardia syndrome (POTS) based on the tilt table test.

Conclusion: Decreased oxygen uptake and cardiac output at peak exercise during iCPET correlated with a greater change in heart rate and ETCO from supine to upright during TTT. There appears to be significant overlap of cardiopulmonary pathophysiology in ME/CFS underlying exercise and orthostatic symptoms.

Source: J. Squires, K. Wichmann Madsen, M.C. Stovall, S. Al-Zayer, W. Xiao, C.-J. Chang, P. Novak, D.M. Systrom. ME/CFS Pathophysiology Investigated by Invasive Cardiopulmonary Exercise Testing and Autonomic Function Testing. American Journal of Respiratory and Critical Care Medicine 2023;207:A2996. https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A2996

Proteomic profiling demonstrates inflammatory and endotheliopathy signatures associated with impaired cardiopulmonary exercise hemodynamic profile in Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome

Abstract:

Approximately 50% of patients who recover from the acute SARS-CoV-2 experience Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome. The pathophysiological hallmark of PASC is characterized by impaired system oxygen extraction (EO2) on invasive cardiopulmonary exercise test (iCPET). However, the mechanistic insights into impaired EO2 remain unclear.

We studied 21 consecutive iCPET in PASC patients with unexplained exertional intolerance. PASC patients were dichotomized into mildly reduced (EO2peak-mild) and severely reduced (EO2peak-severe) EO2 groups according to the median peak EO2 value. Proteomic profiling was performed on mixed venous blood plasma obtained at peak exercise during iCPET.

PASC patients as a group exhibited depressed peak exercise aerobic capacity (peak VO2; 85 ± 18 vs. 131 ± 45% predicted; p = 0.0002) with normal systemic oxygen delivery, DO2 (37 ± 9 vs. 42 ± 15 mL/kg/min; p = 0.43) and reduced EO2 (0.4 ± 0.1 vs. 0.8 ± 0.1; p < 0.0001). PASC patients with EO2peak-mild exhibited greater DO2 compared to those with EO2peak-severe [42.9 (34.2-41.2) vs. 32.1 (26.8-38.0) mL/kg/min; p = 0.01]. The proteins with increased expression in the EO2peak-severe group were involved in inflammatory and fibrotic processes. In the EO2peak-mild group, proteins associated with oxidative phosphorylation and glycogen metabolism were elevated.

In PASC patients with impaired EO2, there exist a spectrum of PASC phenotype related to differential aberrant protein expression and cardio-pulmonary physiologic response. PASC patients with EO2peak-severe exhibit a maladaptive physiologic and proteomic signature consistent with persistent inflammatory state and endothelial dysfunction, while in the EO2peak-mild group, there is enhanced expression of proteins involved in oxidative phosphorylation-mediated ATP synthesis along with an enhanced cardiopulmonary physiological response.

Source: Singh I, Leitner BP, Wang Y, Zhang H, Joseph P, Lutchmansingh DD, Gulati M, Possick JD, Damsky W, Hwa J, Heerdt PM, Chun HJ. Proteomic profiling demonstrates inflammatory and endotheliopathy signatures associated with impaired cardiopulmonary exercise hemodynamic profile in Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome. Pulm Circ. 2023 Apr 1;13(2):e12220. doi: 10.1002/pul2.12220. PMID: 37091121; PMCID: PMC10113513. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113513/ (Full text)

Exercise Intolerance Associated with Impaired Oxygen Extraction in Patients with Long COVID

Abstract:

Objective: Chronic mental and physical fatigue and post-exertional malaise are the more debilitating symptoms of long COVID-19. The study objective was to explore factors contributing to exercise intolerance in long COVID-19 to guide development of new therapies. Exercise capacity data of patients referred for a cardiopulmonary exercise test (CPET) and included in a COVID-19 Survivorship Registry at one urban health center were retrospectively analyzed.

Results: Most subjects did not meet normative criteria for a maximal test, consistent with suboptimal effort and early exercise termination. Mean O2 pulse peak % predicted (of 79 ± 12.9) was reduced, supporting impaired energy metabolism as a mechanism of exercise intolerance in long COVID, n=59. We further identified blunted rise in heart rate peak during maximal CPET. Our preliminary analyses support therapies that optimize bioenergetics and improve oxygen utilization for treating long COVID-19.

Source: Norweg A, Yao L, Barbuto S, Nordvig AS, Tarpey T, Collins E, Whiteson J, Sweeney G, Haas F, Leddy J. Exercise Intolerance Associated with Impaired Oxygen Extraction in Patients with Long COVID. Respir Physiol Neurobiol. 2023 Apr 17;313:104062. doi: 10.1016/j.resp.2023.104062. Epub ahead of print. PMID: 37076024; PMCID: PMC10108551. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108551/ (Full text)

Impaired pulmonary and muscle function during moderate exercise in female patients recovered from SARS-CoV-2

Abstract:

This study aimed to assess pulmonary and muscle dysfunction by analyzing the slow component of oxygen uptake (VO2SC), and mechanical and ventilatory efficiency in adult women recovered from the severe acute respiratory syndrome coronavirus type II (SARS-CoV-2) during a constant load test. 32 women (N = 17 patients with SARS-CoV-2; N = 15 control group) performed two cardiopulmonary exercise tests (CPX) on a cycle ergometer.

In the first test, the participants performed incremental CPX until extenuation. In the second test the participants performed a 10-min CPX at a constant load intensity (watts) corresponding to the first ventilatory threshold. There was a 48-72 h rest period between the two tests. There was a significant increase in the VO2SC in the patients recovered from SARS-CoV-2 (160.4 ± 60 mL min-1) in comparison with the healthy participants (59.6 ± 65 mL min-1) (P < 0.001).

Mechanical efficiency significantly decreased in patients recovered from SARS-CoV-2 compared to the control group (P = 0.04). Ventilatory inefficiency significantly increased in the patients recovered from SARS-CoV-2 compared with the control group (P < 0.001). Adult women recovered from SARS-CoV-2 infection have important pulmonary and muscular dysfunction and fatigue which contributes to increasing the VO2SC and reducing mechanical and ventilatory efficiency during mild-moderate exercise at a constant load.

Source: Pleguezuelos E, Del Carmen A, Moreno E, Ortega P, Robles A, Serra-Prat M, Miravitlles M, Yebenes JC, Garnacho-Castaño MV. Impaired pulmonary and muscle function during moderate exercise in female patients recovered from SARS-CoV-2. Sci Rep. 2022 Dec 4;12(1):20943. doi: 10.1038/s41598-022-24941-9. PMID: 36464697.  https://www.nature.com/articles/s41598-022-24941-9 (Full text)

Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity

Abstract:

BACKGROUND: The aim of this study was to investigate the possibility that a decreased mitochondrial ATP synthesis causes muscular and mental fatigue and plays a role in the pathophysiology of the chronic fatigue syndrome (CFS/ME).

METHODS: Female patients (n = 15) and controls (n = 15) performed a cardiopulmonary exercise test (CPET) by cycling at a continuously increased work rate till maximal exertion. The CPET was repeated 24 h later. Before the tests, blood was taken for the isolation of peripheral blood mononuclear cells (PBMC), which were processed in a special way to preserve their oxidative phosphorylation, which was tested later in the presence of ADP and phosphate in permeabilized cells with glutamate, malate and malonate plus or minus the complex I inhibitor rotenone, and succinate with rotenone plus or minus the complex II inhibitor malonate in order to measure the ATP production via Complex I and II, respectively. Plasma CK was determined as a surrogate measure of a decreased oxidative phosphorylation in muscle, since the previous finding that in a group of patients with external ophthalmoplegia the oxygen consumption by isolated muscle mitochondria correlated negatively with plasma creatine kinase, 24 h after exercise.

RESULTS: At both exercise tests the patients reached the anaerobic threshold and the maximal exercise at a much lower oxygen consumption than the controls and this worsened in the second test. This implies an increase of lactate, the product of anaerobic glycolysis, and a decrease of the mitochondrial ATP production in the patients. In the past this was also found in patients with defects in the mitochondrial oxidative phosphorylation. However the oxidative phosphorylation in PBMC was similar in CFS/ME patients and controls. The plasma creatine kinase levels before and 24 h after exercise were low in patients and controls, suggesting normality of the muscular mitochondrial oxidative phosphorylation.

CONCLUSION: The decrease in mitochondrial ATP synthesis in the CFS/ME patients is not caused by a defect in the enzyme complexes catalyzing oxidative phosphorylation, but in another factor.

TRIAL REGISTRATION: CLINICAL TRIALS REGISTRATION NUMBER: NL16031.040.07.

 

Source: Vermeulen RC, Kurk RM, Visser FC, Sluiter W, Scholte HR. Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J Transl Med. 2010 Oct 11;8:93. doi: 10.1186/1479-5876-8-93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964609/ (Full article)

 

Physiological cost of walking in those with chronic fatigue syndrome (CFS): a case-control study

Abstract:

PURPOSE: To examine the physiological cost of walking in subjects with chronic fatigue syndrome (CFS) and a matched control group, walking at their preferred and at matched walking speeds.

METHODS: Seventeen people with CFS and 17 matched-controls participated in this observational study of physiological cost during over-ground gait. Each subject walked for 5 min at their preferred walking speed (PWS). Controls then walked for 5 min at the same pace of their matched CFS subject. Gait speed and oxygen uptake, gross and net were measured and oxygen uptake was expressed per unit distance ambulated. CFS subjects completed the CFS-Activities and Participation Questionnaire (CFS-APQ).

RESULTS: At PWS the CFS group walked at a slower velocity of 0.84 +/- 0.21 m s(-1) compared to controls with a velocity of 1.19 +/- 0.13 m s(-1) (p < 0.001). At PWS both gross and net oxygen uptake of CFS subjects was significantly less than controls (p = 0.023 and p = 0.025 respectively). At matched-velocity both gross and net physiological cost of gait was greater for CFS subjects than controls (p = 0.048 and p = 0.001, respectively).

CONCLUSION: The physiological cost of walking was significantly greater for people with CFS compared with healthy subjects. The reasons for these higher energy demands for walking in those with CFS have yet to be fully elucidated.

 

Source: Paul L, Rafferty D, Marshal R. Physiological cost of walking in those with chronic fatigue syndrome (CFS): a case-control study. Disabil Rehabil. 2009;31(19):1598-604. https://www.ncbi.nlm.nih.gov/pubmed/19848558