Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a seriously long-term and debilitating illness of unknown cause hallmarked by chronic pain and fatigue, memory and concentration impairment, and inflammation. ME/CFS hypothesis involves impaired Transient receptor potential melastatin 3 (TRPM3) ion channel function, affecting calcium signaling and Natural killer (NK) cell functions.

Currently, substances called opioids, agonists of mu (μ)-opioid receptors (μOR), are the strongest painkillers clinically available for people suffering from strong or long-lasting pain characteristic of ME/CFS. μOR have been reported to specifically inhibit TRPM3 and to be expressed in immune cells where they play an immunomodulatory and immunosuppressive role. Naltrexone hydrochloride (NTX) acts as an antagonist to the μOR thus negating the inhibitory function of this opioid receptor on TRPM3.

Therefore, understanding the mechanism of action for NTX in regulating and modulating TRPM3 channel function in NK cells will provide important information for the development of effective therapeutic interventions for ME/CFS. Whole-cell patch-clamp technique was used to measure TRPM3 activity in Interleukin-2 (IL-2) stimulated and NTX-treated NK cells for 24 h on eight ME/CFS patients and 8 age- and sex-matched healthy controls, after modulation with a TRPM3-agonist, pregnenolone sulfate (PregS), NTX and a TRPM3-antagonist, ononetin. We confirmed impaired TRPM3 function in ME/CFS patients through electrophysiological investigations in IL-2 stimulated NK cells after modulation with PregS and ononetin.

Importantly, TRPM3 channel activity was restored in IL-2 stimulated NK cells isolated from ME/CFS patients after incubation for 24 h with NTX. Moreover, we demonstrated that NTX does not act as an agonist by directly coupling on the TRPM3 ion channel gating. The opioid antagonist NTX has the potential to negate the inhibitory function of opioid receptors on TRPM3 in NK cells from ME/CFS patients, resulting in calcium signals remodeling, which will in turn affect cell functions, supporting the hypothesis that NTX may have potential for use as a treatment for ME/CFS. Our results demonstrate, for the first time, and based on novel patch clamp electrophysiology, potential pharmaco-therapeutic interventions in ME/CFS.

Source: Cabanas H, Muraki K, Staines D and Marshall-Gradisnik S (2019) Naltrexone Restores Impaired Transient Receptor Potential Melastatin 3 Ion Channel Function in Natural Killer Cells From Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Front. Immunol. 10:2545. doi: 10.3389/fimmu.2019.02545 https://www.frontiersin.org/articles/10.3389/fimmu.2019.02545/full (Full article)

Naloxone-mediated activation of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome

Abstract:

BACKGROUND: Opioidergic pathways have an inhibitory regulatory influence on the hypothalamic-pituitary-adrenal axis (HPA) in man. Previous studies have suggested impairment of pituitary-adrenal activation in chronic fatigue syndrome (CFS). We, therefore, decided to investigate the extent of opioid inhibition of HPA activity in CFS as a possible explanation for the reputed HPA hypofunctioning in patients with CFS.

METHOD: Thirteen patients with CFS, diagnosed according to CDC criteria, were compared with thirteen healthy subjects. Adrenocorticotropin (ACTH) and cortisol (CORT) responses were measured following the administration of the opiate antagonist naloxone.

RESULTS: Baseline ACTH and cortisol levels did not differ between the two groups. The release of ACTH (but not cortisol) was significantly blunted in the CFS subjects compared with controls.

CONCLUSIONS: Naloxone mediated activation of the HPA is attenuated in CFS. Excessive opioid inhibition of the HPA is thus an unlikely explanation for the HPA dysregulation in this disorder.

 

Source: Scott LV, Burnett F, Medbak S, Dinan TG. Naloxone-mediated activation of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome. Psychol Med. 1998 Mar;28(2):285-93. http://www.ncbi.nlm.nih.gov/pubmed/9572086