A multi-omics based anti-inflammatory immune signature characterizes Long COVID Syndrome

Abstract:

To investigate Long COVID Syndrome (LCS) pathophysiology, we performed an exploratory study with blood plasma derived from three groups: 1) healthy vaccinated individuals without SARS-CoV-2 exposure; 2) asymptomatic recovered patients at least three months after SARS-CoV-2 infection and; 3) symptomatic patients at least 3 months after SARS-CoV-2 infection with chronic fatigue syndrome or similar symptoms, here designated as Long COVID Syndrome (LCS) patients.

Multiplex cytokine profiling indicated slightly elevated pro-inflammatory cytokine levels in recovered individuals in contrast to LCS patients. Plasma proteomics demonstrated low levels of acute phase proteins and macrophage-derived secreted proteins in LCS. High levels of anti-inflammatory oxylipins including omega-3 fatty acids in LCS were detected by eicosadomics, whereas targeted metabolic profiling indicated high levels of anti-inflammatory osmolytes taurine and hypaphorine, but low amino acid and triglyceride levels and deregulated acylcarnithines. A model considering alternatively polarized macrophages as a major contributor for these molecular alterations is presented.

Source: Kovarik JJ, Bileck A, Hagn G, Meier-Menches SM, Frey T, Kaempf A, Hollenstein M, Shoumariyeh T, Skos L, Reiter B, Gerner MC, Spannbauer A, Hasimbegovic E, Schmidl D, Garhöfer G, Gyöngyösi M, Schmetterer KG, Gerner C. A multi-omics based anti-inflammatory immune signature characterizes Long COVID Syndrome. iScience. 2022 Dec 5:105717. doi: 10.1016/j.isci.2022.105717. Epub ahead of print. PMID: 36507225; PMCID: PMC9719844. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719844/ (Full text)

Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination

Abstract:

Long-term health problems such as fatigue, palpitations, syncope, and dizziness are well-known in patients after COVID-19 (post-acute sequelae of coronavirus (PASC)). More recently, comparable problems have been noticed after the SARS-CoV-2 vaccination (post-VAC). The pathophysiology of these problems is not well-understood.

Methods: In 38 children and young adults, we tested if these health problems were related to dysautonomia in an active standing test (Group 1: 19 patients after COVID-19; Group 2: 12 patients with a breakthrough infection despite a vaccination; and Group 3: 7 patients after a vaccination without COVID-19). The data were compared with a control group of 47 healthy age-matched patients, as recently published.

Results: All patients had a normal left ventricular function as measured by echocardiography. Significantly elevated diastolic blood pressure in all patient groups indicated a regulatory cardiovascular problem. Compared with the healthy control group, the patient groups showed significantly elevated heart rates whilst lying and standing, with significantly higher heart rate increases. The stress index was significantly enhanced in all patient groups whilst lying and standing. Significantly decreased pNN20 values, mostly whilst standing, indicated a lower vagus activity in all patient groups. The respiratory rates were significantly elevated in Groups 1 and 2.

Conclusion: The uniform increase in the heart rates and stress indices, together with low pNN20 values, indicated dysautonomia in children with health problems after COVID-19 disease and/or vaccination. A total of 8 patients fulfilled the criteria of postural orthostatic tachycardia syndrome and 9 patients of an inappropriate sinus tachycardia, who were successfully treated with omega-3 fatty acid supplementation and pharmacotherapy.

Source: Buchhorn R. Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination. Vaccines (Basel). 2022 Oct 9;10(10):1686. doi: 10.3390/vaccines10101686. PMID: 36298551; PMCID: PMC9607162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607162/ (Full text)

Low omega-3 index and polyunsaturated fatty acid status in patients with chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

BACKGROUND: Several studies have suggested that low levels of omega-3 fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with cardiovascular risk, major depression, sleep problems, inflammation and other health-related issues. So far, however, erythrocyte PUFA status in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) has not been established. This study aimed to determine whether n-3 PUFA content and omega-3 index are associated with measures in CFS/ME patients.

PATIENTS AND METHODS: PUFA levels and omega-3 index were measured in 31 Spanish CFS/ME patients using the HS-Omega-3 Index method. Demographic and clinical characteristics and self-reported outcome measures were also recorded.

RESULTS: A low mean omega-3 index (5.75%) was observed in 92.6% of the sample. Omega-3 index was inversely correlated with the AA/EPA ratio (p = 0.00002) and the BMI (p = 0.0106). In contrast, the AA/EPA ratio was positively associated with the BMI (p = 0.0038). No association for FIS-40 and PSQI measures was found (p > 0.05).

CONCLUSION: The low omega-3 index found in our CFS/ME patients may indicate increased risks for cardiovascular health, which should be further investigated. A low omega-3 index also suggests a pro-inflammatory state in these patients. Attempts should be made to increase the omega-3 index in CFS/ME patients, based on intervention trials assessing a potential therapeutic value.

Source: Castro-Marrero J, Zaragozá MC, Domingo JC, Martinez-Martinez A, Alegre J, von Schacky C. Low omega-3 index and polyunsaturated fatty acid status in patients with chronic fatigue syndrome/myalgic encephalomyelitis. Prostaglandins Leukot Essent Fatty Acids. 2018 Dec;139:20-24. doi: 10.1016/j.plefa.2018.11.006. Epub 2018 Nov 9. https://www.ncbi.nlm.nih.gov/pubmed/30471769

Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19

Abstract:

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the lasting pandemic of coronavirus disease 2019 (COVID-19) and the post-acute phase sequelae of heterogeneous negative impacts in multiple systems known as the “long COVID.” The mechanisms of neuropsychiatric complications of long COVID are multifactorial, including long-term tissue damages from direct CNS viral involvement, unresolved systemic inflammation and oxidative stress, maladaptation of the renin-angiotensin-aldosterone system and coagulation system, dysregulated immunity, the dysfunction of neurotransmitters and hypothalamus–pituitaryadrenal (HPA) axis, and the psychosocial stress imposed by societal changes in response to this pandemic. The strength of safety, well-acceptance, and accumulating scientific evidence has now afforded nutritional medicine a place in the mainstream of neuropsychiatric intervention and prophylaxis.

Long chain omega-3 polyunsaturated fatty acids (omega-3 or n-3 PUFAs) might have favorable effects on immunity, inflammation, oxidative stress and psychoneuroimmunity at different stages of SARS-CoV-2 infection. Omega-3 PUFAs, particularly EPA, have shown effects in treating mood and neurocognitive disorders by reducing pro-inflammatory cytokines, altering the HPA axis, and modulating neurotransmission via lipid rafts. In addition, omega-3 PUFAs and their metabolites, including specialized pro-resolvin mediators, accelerate the process of cleansing chronic inflammation and restoring tissue homeostasis, and therefore offer a promising strategy for Long COVID. In this article, we explore in a systematic review the putative molecular mechanisms by which omega-3 PUFAs and their metabolites counteract the negative effects of long COVID on the brain, behavior, and immunity.

Source: Yang CP, Chang CM, Yang CC, Pariante CM, Su KP. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav Immun. 2022 Apr 4;103:19-27. doi: 10.1016/j.bbi.2022.04.001. Epub ahead of print. PMID: 35390469; PMCID: PMC8977215. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977215/ (Full text)

Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome. Potential involvement of altered carnitine palmitoyltransferase-I activity

Abstract:

OBJECTIVE: The underlying aetiology of chronic fatigue syndrome is currently unknown; however, in the light of carnitine’s critical role in mitochondrial energy production, it has been suggested that chronic fatigue syndrome may be associated with altered carnitine homeostasis. This study was conducted to comparatively examine full endogenous carnitine profiles in patients with chronic fatigue syndrome and healthy controls.

DESIGN: A cross-sectional, observational study.

SETTING AND SUBJECTS: Forty-four patients with chronic fatigue syndrome and 49 age- and gender-matched healthy controls were recruited from the community and studied at the School of Pharmacy & Medical Sciences, University of South Australia.

MAIN OUTCOME MEASURES: All participants completed a fatigue severity scale questionnaire and had a single fasting blood sample collected which was analysed for l-carnitine and 35 individual acylcarnitine concentrations in plasma by LC-MS/MS.

RESULTS: Patients with chronic fatigue syndrome exhibited significantly altered concentrations of C8:1, C12DC, C14, C16:1, C18, C18:1, C18:2 and C18:1-OH acylcarnitines; of particular note, oleyl-L-carnitine (C18:1) and linoleyl-L-carnitine (C18:2) were, on average, 30-40% lower in patients than controls (P < 0.0001). Significant correlations between acylcarnitine concentrations and clinical symptomology were also demonstrated.

CONCLUSIONS: It is proposed that this disturbance in carnitine homeostasis is reflective of a reduction in carnitine palmitoyltransferase-I (CPT-I) activity, possibly a result of the accumulation of omega-6 fatty acids previously observed in this patient population. It is hypothesized that the administration of omega-3 fatty acids in combination with l-carnitine would increase CPT-I activity and improve chronic fatigue syndrome symptomology.

© 2011 The Association for the Publication of the Journal of Internal Medicine.

 

Source: Reuter SE, Evans AM. Long-chain acylcarnitine deficiency in patients with chronic fatigue syndrome. Potential involvement of altered carnitine palmitoyltransferase-I activity. J Intern Med. 2011 Jul;270(1):76-84. doi: 10.1111/j.1365-2796.2010.02341.x. Epub 2011 Jan 19. https://www.ncbi.nlm.nih.gov/pubmed/21205027

 

In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation

Abstract:

There is now evidence that major depression is accompanied by decreased levels of omega3 poly-unsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). There is a strong comorbidity between major depression and chronic fatigue syndrome (CFS). The present study has been carried out in order to examine PUFA levels in CFS.

In twenty-two CFS patients and 12 normal controls we measured serum PUFA levels using gas chromatography and mass spectrometry. We found that CFS was accompanied by increased levels of omega6 PUFAs, i.e. linoleic acid and arachidonic acid (AA), and mono-unsaturated fatty acids (MUFAs), i.e. oleic acid. The EPA/AA and total omega3/omega6 ratios were significantly lower in CFS patients than in normal controls. The omega3/omega6 ratio was significantly and negatively correlated to the severity of illness and some items of the FibroFatigue scale, i.e. aches and pain, fatigue and failing memory.

The severity of illness was significantly and positively correlated to linoleic and arachidonic acid, oleic acid, omega9 fatty acids and one of the saturated fatty acids, i.e. palmitic acid. In CFS subjects, we found significant positive correlations between the omega3/omega6 ratio and lowered serum zinc levels and the lowered mitogen-stimulated CD69 expression on CD3+, CD3+ CD4+, and CD3+ CD8+ T cells, which indicate defects in early T cell activation. The results of this study show that a decreased availability of omega3 PUFAs plays a role in the pathophysiology of CFS and is related to the immune pathophysiology of CFS.

The results suggest that patients with CFS should respond favourably to treatment with–amongst other things–omega3 PUFAs, such as EPA and DHA.

 

Source: Maes M, Mihaylova I, Leunis JC. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation. Neuro Endocrinol Lett. 2005 Dec;26(6):745-51. http://www.ncbi.nlm.nih.gov/pubmed/16380690

 

Treatment of chronic fatigue syndrome by dietary supplementation with omega-3 fatty acids–a good idea?

Abstract:

Minor alterations of immune, neuroendocrine, and autonomic function may be associated with the chronic fatigue syndrome. omega-3 fatty acids decrease the production of putative mediators of inflammation, including interleukin-1, and tumor necrosis factor. Since interleukin-1 and tumor necrosis factor are the principal polypeptide mediators of immunoregulation, reduced production of these cytokines by dietary supplementation with omega-3, may be a possible mechanism for the treatment of chronic fatigue syndrome.

Copyright 2002, Elsevier Science Ltd. All rights reserved.

 

Source: Tamizi far B, Tamizi B. Treatment of chronic fatigue syndrome by dietary supplementation with omega-3 fatty acids–a good idea? Med Hypotheses. 2002 Mar;58(3):249-50. http://www.ncbi.nlm.nih.gov/pubmed/12018979