Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation

Abstract:

Mast cells (MC) are ubiquitous in the body and are critical for allergic diseases, but also in immunity and inflammation, as well as potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal and the adrenal glands that would allow them to regulate, but also be affected by the autonomic nervous system (ANS).

MC are stimulated not only by allergens, but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory and vasoactive mediators. Hence MC may be able to regulate homeostatic functions that appear to be dysfunctional in many conditions, such as postural orthostatic hypertension syndrome (POTS), autism spectrum disorder (ASD), myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long-COVID syndrome.

The evidence indicates that there is a possible association between these conditions and diseases associated with mast cell activation, There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.

Source: Theoharides TC, Twahir A, Kempuraj D. Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation. Ann Allergy Asthma Immunol. 2023 Nov 9:S1081-1206(23)01397-2. doi: 10.1016/j.anai.2023.10.032. Epub ahead of print. PMID: 37951572. https://pubmed.ncbi.nlm.nih.gov/37951572/

Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology

Abstract:

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks.

In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression.

Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.

Source:Aguado, J., Amarilla, A.A., Taherian Fard, A. et al. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat Aging (2023). https://doi.org/10.1038/s43587-023-00519-6 https://www.nature.com/articles/s43587-023-00519-6 (Full text)

Neurologic sequelae of COVID-19 are determined by immunologic imprinting from previous coronaviruses

Abstract:

Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the CNS, can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations and persistence of SARS-CoV-2 reservoirs.

In this prospective cohort study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common coronaviruses: 229E, HKU1, NL63 and OC43) in the serum and CSF from 112 infected individuals who developed (n = 18) or did not develop (n = 94) neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC compared with serum responses. All antibody isotypes (IgG, IgM, IgA) and subclasses (IgA1-2, IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM).

These data argue in favour of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected.

Compared to individuals who did not develop post-acute complications following infection, individuals with neuroPASC had similar demographic features (median age 65 versus 66.5 years, respectively, P = 0.55; females 33% versus 44%, P = 0.52) but exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fcγ receptors. However, surprisingly, neuroPASC individuals showed significantly expanded antibody responses to other common coronaviruses, including 229E, HKU1, NL63 and OC43.

This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an ‘original antigenic sin’ (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to the current infection, as a key prognostic marker of neuroPASC disease.

Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.

Source: Spatola M, Nziza N, Jung W, Deng Y, Yuan D, Dinoto A, Bozzetti S, Chiodega V, Ferrari S, Lauffenburger DA, Mariotto S, Alter G. Neurologic sequelae of COVID-19 are determined by immunologic imprinting from previous coronaviruses. Brain. 2023 Oct 3;146(10):4292-4305. doi: 10.1093/brain/awad155. PMID: 37161609. https://academic.oup.com/brain/article/146/10/4292/7158783 (Full text)

Long-term neurological implications of severe acute respiratory syndrome coronavirus 2 infections in neonates: Innate immune memory and chronic neuroinflammation

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause long-term neurological complications in adults. However, the mechanisms by which early-life SARS-CoV-2 infection increases the risk of abnormal neurodevelopment remain unknown.

Recent studies have shown an association with chronic proinflammatory cytokine/chemokine production in the central nervous system (CNS). Therefore, it was hypothesised that innate immune activation and induction of innate immune memory may play a potential role in the neonatal brain. Haematopoietic stem cells in the bone marrow are exposed to SARS-CoV-2, SARS-CoV-2 envelope protein (E protein), lipopolysaccharide (LPS)-bound spike proteins (S1 and S2 proteins), and damage-associated molecular patterns (DAMPs). Myeloid progenitors enter the stroma of the choroid plexus and are further directed to incessantly supply the brain parenchyma with resident innate immune cells. The S proteins-LPS complex can cross the blood–brain barrier and plays an important role in microglial and astrocytic inflammatory responses and innate immune memory.

Persistently activated microglia with memory release pro-inflammatory cytokines/chemokines which contribute to abnormal synaptic development in the frontal lobe and cerebellum, potentially leading to long-term neurological complications, similar to those observed in autism spectrum disorder (ASD). In addition, this hypothesis suggests that bacterial and fungal products may act as adjuvants to S proteins and may also explain why S proteins alone are insufficient to induce neuroinflammation in neonates.

Source: Tatsuro Nobutoki. Long-term neurological implications of severe acute respiratory syndrome coronavirus 2 infections in neonates: Innate immune memory and chronic neuroinflammation. Medical Hypotheses, Volume 181, December 2023, 111204 https://www.sciencedirect.com/science/article/pii/S0306987723002001 (Full text)

Brain fog in long COVID: A glutamatergic hypothesis with astrocyte dysfunction accounting for brain PET glucose hypometabolism

Abstract:

Brain [18F]FDG-PET scans have revealed a glucose hypometabolic pattern in patients with long COVID. This hypometabolism might reflect primary astrocyte dysfunction. Astrocytes play a key role in regulating energy metabolism to support neuronal and synaptic activity, especially activity involving glutamate as the main neurotransmitter.

Neuroinflammation is one of the purported mechanisms to explain brain damage caused by infection with SARS-CoV-2. Microglial activation can trigger reactive astrogliosis, contributing to neuroinflammatory changes. These changes can disturb glutamatergic homeostasis, ultimately leading to cognitive fatigue, which has been described in other clinical situations.

We hypothesize that glutamatergic dysregulation related to astrocyte dysfunction could be the substrate of brain PET hypometabolism in long COVID patients with brain fog. Based on these elements, we propose that therapeutics targeting astrocytic glutamate regulation could help mitigate long COVID neurological manifestations.

Source: Tatiana Horowitz, Luc Pellerin, Eduardo R. Zimmer, Eric Guedj. Brain fog in long COVID: A glutamatergic hypothesis with astrocyte dysfunction accounting for brain PET glucose hypometabolism. Medical Hypotheses, Volume 180, 2023, 111186, ISSN 0306-9877, https://doi.org/10.1016/j.mehy.2023.111186. https://www.sciencedirect.com/science/article/pii/S0306987723001822 (Full text)

Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [11C]PBR28 PET correlates with vascular disease measures

Abstract:

The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction.

In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls.

We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction.

These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.

Source: Michael B VanElzakkerHannah F BuesLudovica BrusaferriMinhae KimDeena SaadiEva-Maria RataiDarin D DoughertyMarco L Loggia. Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [11C]PBR28 PET correlates with vascular disease measures. https://www.biorxiv.org/content/10.1101/2023.10.19.563117v1 (Full text available as PDF file)

Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a recent worldwide coronavirus disease-2019 (COVID-19) pandemic. SARS-CoV-2 primarily causes an acute respiratory infection but can progress into significant neurological complications in some. Moreover, patients with severe acute COVID-19 could develop debilitating long-term sequela.

Long-COVID is characterized by chronic symptoms that persist months after the initial infection. Common complaints are fatigue, myalgias, depression, anxiety, and “brain fog,” or cognitive and memory impairments. A recent study demonstrated that a mild COVID-19 respiratory infection could generate elevated proinflammatory cytokines and chemokines in the cerebral spinal fluid.

This commentary discusses findings from this study, demonstrating that even a mild respiratory SARS-CoV-2 infection can cause considerable neuroinflammation with microglial and macrophage reactivity. Such changes could also be gleaned by measuring chemokines and cytokines in the circulating blood. Moreover, neuroinflammation caused by mild SARS-CoV-2 infection can also impair hippocampal neurogenesis, deplete oligodendrocytes, and decrease myelinated axons.

All these changes likely contribute to cognitive deficits in long-COVID syndrome. Therefore, strategies capable of restraining neuroinflammation, maintaining better hippocampal neurogenesis, and preserving oligodendrocyte lineage differentiation and maturation may prevent or reduce the incidence of long-COVID after SARS-CoV-2 respiratory infection.

Source: Wei ZD, Liang K, Shetty AK. Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments. Aging Dis. 2023 Sep 24. doi: 10.14336/AD.2023.10918. Epub ahead of print. PMID: 37815903. https://www.aginganddisease.org/EN/10.14336/AD.2023.10918 (Full text)

From ‘mental fog’ to post-acute COVID-19 syndrome’s executive function alteration: Implications for clinical approach

Abstract:

A common symptom of the neuropsychiatric Post-Acute COVID-19 syndrome (neuro-PACS) is the so called ‘brain fog’. Patients describe the brain fog as problems with attention, memory and mental fatigue. Brain fog is experienced by 9-55% of people for months after having contracted SARS-CoV-2 virus. Several theories have been proposed to explain PACS’s brain fog, including a neuroinflammatory hypothesis, but the hypothesis remains to be proven. Here, we examined inflammatory and immunological blood profile in a cohort of patients with PACS to investigate the association between executive functions and blood inflammatory markers.

Executive function was assessed by the Trail Making Test (TMT) Part A and Part B, as well as the Barkley Deficits in Executive Functioning Scale (BDEFS), in 71 patients (36 men), average age of 40 years (range: 15-82, SD: 15.7). Impairment in executive functioning (BDEFS scores and TMT B scores) correlated with increased levels of Interleukin-6 (IL-6), fibrinogen and ferritin. Moreover, elevated levels of Il-6, fibrinogen, ferritin, tumor necrosis factor-alpha and C-reactive protein have been observed in PACS.

These findings demonstrate that PACS is characterized by the presence of an immuno-inflammatory process, which is associated with diminished executive functioning. Here, we argue in favour of a shift from the non-descriptive definition of ‘mental fog’ to a characterization of a subtype of PACS, associated with alteration in executive functioning. Implication for clinical settings and prevention are discussed.

Source: Pallanti S, Di Ponzio M, Gavazzi G, Gasic G, Besteher B, Heller C, Kikinis R, Makris N, Kikinis Z. From ‘mental fog’ to post-acute COVID-19 syndrome’s executive function alteration: Implications for clinical approach. J Psychiatr Res. 2023 Sep 30;167:10-15. doi: 10.1016/j.jpsychires.2023.09.017. Epub ahead of print. PMID: 37804756. https://pubmed.ncbi.nlm.nih.gov/37804756/

Reactive gliosis and neuroinflammation: prime suspects in the pathophysiology of post-acute neuroCOVID-19 syndrome

Abstract:

Introduction: As the repercussions from the COVID-19 pandemic continue to unfold, an ever-expanding body of evidence suggests that infection also elicits pathophysiological manifestations within the central nervous system (CNS), known as neurological symptoms of post-acute sequelae of COVID infection (NeuroPASC). Although the neurological impairments and repercussions associated with NeuroPASC have been well described in the literature, its etiology remains to be fully characterized.

Objectives: This mini-review explores the current literature that elucidates various mechanisms underlining NeuroPASC, its players, and regulators, leading to persistent neuroinflammation of affected individuals. Specifically, we provide some insights into the various roles played by microglial and astroglial cell reactivity in NeuroPASC and how these cell subsets potentially contribute to neurological impairment in response to the direct or indirect mechanisms of CNS injury.

Discussion: A better understanding of the mechanisms and biomarkers associated with this maladaptive neuroimmune response will thus provide better diagnostic strategies for NeuroPASC and reveal new potential mechanisms for therapeutic intervention. Altogether, the elucidation of NeuroPASC pathogenesis will improve patient outcomes and mitigate the socioeconomic burden of this syndrome.

Source: Saucier J, Comeau D, Robichaud GA, Chamard-Witkowski L. Reactive gliosis and neuroinflammation: prime suspects in the pathophysiology of post-acute neuroCOVID-19 syndrome. Front Neurol. 2023 Aug 24;14:1221266. doi: 10.3389/fneur.2023.1221266. PMID: 37693763; PMCID: PMC10492094. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492094/ (Full text)

Cognitive impairment after Long COVID-19: Current Evidence and Perspectives

Abstract:

COVID-19 is a respiratory infectious disease caused by the SARS-CoV-2 virus. Most patients recover after treatment, but COVID-19 treatment may lead to cognitive impairment. Recent studies have found that some recoverers experience cognitive impairments such as decreased memory and attention, and sleep disorder, indicating that COVID-19 may have longerterm effects on cognitive function.

Studies have found that COVID-19 may cause cognitive decline by damaging key brain regions such as the hippocampus and anterior cingulate cortex. Studies have also found that COVID-19 patients have active neuroinflammation, mitochondrial dysfunction, and microglial activation, suggesting that neuroinflammation, mitochondrial stress, and neurodegenerative changes may be potential mechanisms leading to cognitive impairment.

In summary, the possibility of cognitive impairment after COVID-19 treatment deserves close attention. Large-scale follow-up studies will help further explore the impact of COVID-19 on cognitive function and provide evidence to support clinical treatment and rehabilitation practices. Neuropathological and biological studies can explore precise mechanisms in-depth and provide a theoretical basis for prevention, treatment, and intervention research.

Given the risks of long-term COVID-19 and reinfection, it is necessary to integrate basic and clinical research data to maximize the maintenance of patient’s cognitive function and life quality. This also provides important experience in responding to similar public health events. This article integrates clinical and basic evidence of cognitive impairment after COVID-19 and discusses potential mechanisms and future research directions.

Source: Zhi-Tao Li, ZHANG ZHEN, Zhuoya Zhang, Zhi-Yong Wang, Hao Li. Cognitive impairment after Long COVID-19: Current Evidence and Perspectives. Front. Neurol. Sec. Neuroinfectious Diseases. Volume 14 – 2023 | doi: 10.3389/fneur.2023.1239182 https://www.frontiersin.org/articles/10.3389/fneur.2023.1239182/abstract