Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses

Abstract:

Long-term symptoms such as pain, fatigue, and cognitive impairments are commonly observed in individuals affected by coronavirus disease 2019 (COVID-19). Metabolites of the kynurenine pathway have been proposed to account for cognitive impairment in COVID-19 patients.

Here, cerebrospinal fluid (CSF) and plasma levels of kynurenine pathway metabolites in 53 COVID-19 patients and 12 non-inflammatory neurological disease controls in Sweden were measured with an ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS) and correlated with immunological markers and neurological markers. Single cell transcriptomic data from a previous study of 130 COVID-19 patients was used to investigate the expression of key genes in the kynurenine pathway.

The present study reveals that the neuroactive kynurenine pathway metabolites quinolinic acid (QUIN) and kynurenic acid (KYNA) are increased in CSF in patients with acute COVID-19. In addition, CSF levels of kynurenine, ratio of kynurenine/tryptophan (rKT) and QUIN correlate with neurodegenerative markers.

Furthermore, tryptophan is significantly decreased in plasma but not in the CSF. In addition, the kynurenine pathway is strongly activated in the plasma and correlates with the peripheral immunological marker neopterin. Single-cell transcriptomics revealed upregulated gene expressions of the rate-limiting enzyme indoleamine 2,3- dioxygenase1 (IDO1) in CD14+ and CD16+ monocytes that correlated with type II-interferon response exclusively in COVID-19 patients.

In summary, our study confirms significant activation of the peripheral kynurenine pathway in patients with acute COVID-19 and, notably, this is the first study to identify elevated levels of kynurenine metabolites in the central nervous system associated with the disease. Our findings suggest that peripheral inflammation, potentially linked to overexpression of IDO1 in monocytes, activates the kynurenine pathway. Increased plasma kynurenine, crossing the blood-brain barrier, serves as a source for elevated brain KYNA and neurotoxic QUIN.

We conclude that blocking peripheral-to-central kynurenine transport could be a promising strategy to protect against neurotoxic effects of QUIN in COVID-19 patients.

Source: Li X, Edén A, Malwade S, Cunningham JL, Bergquist J, Weidenfors JA, Sellgren CM, Engberg G, Piehl F, Gisslen M, Kumlien E, Virhammar J, Orhan F, Rostami E, Schwieler L, Erhardt S. Central and peripheral kynurenine pathway metabolites in COVID-19: Implications for neurological and immunological responses. Brain Behav Immun. 2024 Nov 28:S0889-1591(24)00720-7. doi: 10.1016/j.bbi.2024.11.031. Epub ahead of print. PMID: 39615604. https://www.sciencedirect.com/science/article/abs/pii/S0889159124007207

Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19

Abstract:

SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes.

Similar distribution patterns of the spike protein were observed in SARS-CoV-2-infected mice. Injection of spike protein alone was sufficient to induce neuroinflammation, proteome changes in the skull-meninges-brain axis, anxiety-like behavior, and exacerbated outcomes in mouse models of stroke and traumatic brain injury. Vaccination reduced but did not eliminate spike protein accumulation after infection in mice. Our findings suggest persistent spike protein at the brain borders may contribute to lasting neurological sequelae of COVID-19.

Source: Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe. 2024 Nov 26:S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007. Epub ahead of print. PMID: 39615487. https://www.sciencedirect.com/science/article/pii/S1931312824004384 (Full text)

Large scale phenotyping of long COVID inflammation reveals mechanistic subtypes of disease after COVID-19 hospitalisation

Abstract:

One in ten SARS-CoV-2 infections result in prolonged symptoms termed long COVID, yet disease phenotypes and mechanisms are poorly understood. We studied the blood proteome of 719 previously hospitalised adults with long COVID grouped by symptoms. Elevated markers of myeloid inflammation and complement activation were associated with long COVID; elevated IL1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue, and anxiety/depression, while MATN2 and DPP10 were elevated in gastrointestinal (GI) symptoms, and C1QA in cognitive impairment.
Proteins suggestive of neurodegeneration were elevated in cognitive impairment, whilst SCG3 (indicative of brain-gut axis disturbance) was specific to GI symptoms. Nasal inflammation was apparent after COVID-19 but did not associate with symptoms. Although SARS-CoV-2 specific IgG was elevated with some long COVID symptoms, virus was not detected from sputum. Thus, systemic inflammation is evident in long COVID and could be targeted in therapeutic trials tailored to pathophysiological differences between symptom groups.

Source: Peter Openshaw, Felicity Liew, Claudia Efstathiou et al. Large scale phenotyping of long COVID inflammation reveals mechanistic subtypes of disease after COVID-19 hospitalisation, 04 December 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3427282/v1] https://www.researchsquare.com/article/rs-3427282/v1 (Full text)