Comparison of the Degree of Deconditioning in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Patients with and without Orthostatic Intolerance

Abstract:

Background: Orthostatic intolerance (OI) is a core finding in individuals with myalgic encephalomyelitis /chronic fatigue syndrome (ME/CFS). Deconditioning is often proposed as an important determinant for OI. Deconditioning can be objectively classified using the predicted peak oxygen consumption (%VO2 peak) values as derived from cardiopulmonary exercise testing (CPET) and OI can be objectively quantified using cerebral blood flow (CBF) changes during tilt testing. Therefore, if deconditioning contributes to OI, a correlation between peak VO2 and the %CBF reduction is expected.

Methods and results: 18 healthy controls (HC) and 122 ME/CFS patients without hypotension or tachycardia on tilt testing were studied. Deconditioning was classified as follows: %VOpeak ≥85%= no deconditioning, %VO2 peak 65-85%= mild deconditioning, %VO2 peak<65%= severe deconditioning. HC had higher %VO2 peak compared to ME/CFS patients (p<0.0001). ME/CFS patients had significantly larger CBF reduction than HC (p<0.0001). No relation between the degree of deconditioning by the %VO2 peak and the %CBF reduction in ME/CFS patients was found. Moreover, we separately analyzed ME/CFS patients without an abnormal CBF reduction. Despite equal CBF reductions compared to HC and large differences between these patients and the patients with an abnormal CBF reduction, cardiac index (CI) changes (measured by suprasternal Doppler) were significantly less compared to ME/CFS patients with an abnormal CBF reduction (p<0.0001) but larger than in HC (p=0.004). Despite these different hemodynamic findings, %VO2 values were not different between the two patient groups, argumenting again against the causative role of hemodynamic abnormalities in deconditioning.

Conclusion: In ME/CFS patients without hypotension or tachycardia there is no relation between the %VO2 peak during CPET and the %CBF and %CI reduction during tilt testing, whether or not patients have an abnormal CBF reduction during tilt testing. It suggests again that deconditioning does not play an important role in OI.

Source: VAN CAMPEN, C (Linda) M.C.; VISSER, Frans C.. Comparison of the Degree of Deconditioning in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Patients with and without Orthostatic Intolerance. Medical Research Archives, [S.l.], v. 10, n. 6, june 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2858>. Date accessed: 17 july 2022. doi: https://doi.org/10.18103/mra.v10i6.2858.

Deconditioning does not explain orthostatic intolerance in ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome)

Abstract:

Background: Orthostatic intolerance (OI) is a frequent finding in individuals with myalgic encephalomyelitis /chronic fatigue syndrome (ME/CFS). Published studies have proposed that deconditioning is an important pathophysiological mechanism in various forms of OI, including postural orthostatic tachycardia syndrome (POTS), however conflicting opinions exist. Deconditioning can be classified objectively using the predicted peak oxygen consumption (VO2) values from cardiopulmonary exercise testing (CPET). Therefore, if deconditioning is an important contributor to OI symptomatology, one would expect a relation between the degree of reduction in peak VO2during CPET and the degree of reduction in CBF during head-up tilt testing (HUT).

Methods and results: In 22 healthy controls and 199 ME/CFS patients were included. Deconditioning was classified by the CPET response as follows: %peak VO2 ≥ 85% no deconditioning, %peak VO2 65–85% = mild deconditioning, and %peak VO2 < 65% = severe deconditioning. HC had higher oxygen consumption at the ventilatory threshold and at peak exercise as compared to ME/CFS patients (p ranging between 0.001 and < 0.0001). Although ME/CFS patients had significantly greater CBF reduction than HC (p < 0.0001), there were no differences in CBF reduction among ME/CFS patients with no, mild, or severe deconditioning. We classified the hemodynamic response to HUT into three categories: those with a normal heart rate and blood pressure response, postural orthostatic tachycardia syndrome, or orthostatic hypotension. No difference in the degree of CBF reduction was shown in those three groups.

Conclusion: This study shows that in ME/CFS patients orthostatic intolerance is not caused by deconditioning as defined on cardiopulmonary exercise testing. An abnormal high decline in cerebral blood flow during orthostatic stress was present in all ME/CFS patients regardless of their %peak VO2 results on cardiopulmonary exercise testing.

Source: van Campen, C.(.M.C., Rowe, P.C. & Visser, F.C. Deconditioning does not explain orthostatic intolerance in ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome). J Transl Med 19, 193 (2021). https://doi.org/10.1186/s12967-021-02819-0 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-021-02819-0 (Full study)

Elevated brain natriuretic peptide levels in chronic fatigue syndrome associate with cardiac dysfunction: a case control study

Abstract:

Objectives: To explore levels of the brain natriuretic peptide (BNP) and how these associate with the cardiac abnormalities recently identified in chronic fatigue syndrome (CFS).

Methods: Cardiac magnetic resonance examinations were performed using 3T Philips Intera Achieva scanner (Best, Netherlands) in CFS (Fukuda) participants and sedentary controls matched group wise for age and sex. BNP was also measured by using an enzyme immunoassay in plasma from 42 patients with CFS and 10 controls.

Results: BNP levels were significantly higher in the CFS cohort compared with the matched controls (P=0.013). When we compared cardiac volumes (end-diastolic and end-systolic) between those with high BNP levels (BNP>400 pg/mL) and low BNP (<400 pg/mL), there were significantly lower cardiac volumes in those with the higher BNP levels in both end-systolic and end-diastolic volumes (P=0.05). There were no relationships between fatigue severity, length of disease and BNP levels (P=0.2) suggesting that our findings are unlikely to be related to deconditioning.

Conclusion: This study confirms an association between reduced cardiac volumes and BNP in CFS. Lack of relationship between length of disease suggests that findings are not secondary to deconditioning. Further studies are needed to explore the utility of BNP to act as a stratification paradigm in CFS that directs targeted treatments.

Source: Cara Tomas, Andreas Finkelmeyer, Tim Hodgson, Laura MacLachlan, Guy A MacGowan, Andrew M Blamire, Julia L Newton. Elevated brain natriuretic peptide levels in chronic fatigue syndrome associate with cardiac dysfunction: a case control study. Open Heart 2017;4:e000697. doi:10.1136/ openhrt-2017-000697 http://openheart.bmj.com/content/openhrt/4/2/e000697.full.pdf (Full article)

Reduced cardiac volumes in chronic fatigue syndrome associate with plasma volume but not length of disease: a cohort study

Abstract:

OBJECTIVES: To explore potential mechanisms that underpin the cardiac abnormalities seen in chronic fatigue syndrome (CFS) using non-invasive cardiac impedance, red cell mass and plasma volume measurements.

METHODS: Cardiac MR (MR) examinations were performed using 3 T Philips Intera Achieva scanner (Best, NL) in participants with CFS (Fukuda; n=47) and matched case-by-case controls. Total volume (TV), red cell volume (RCV) and plasma volume (PV) measurements were performed (41 CFS and 10 controls) using the indicator dilution technique using simultaneous 51-chromium labelling of red blood cells and 125-iodine labelling of serum albumin.

RESULTS: The CFS group length of history (mean±SD) was 14±10 years. Patients with CFS had significantly reduced end-systolic and end-diastolic volumes together with reduced end-diastolic wall masses (all p<0.0001). Mean±SD RCV was 1565±443 mL with 26/41 (63%) having values below 95% of expected. PV was 2659±529 mL with 13/41 (32%) <95% expected. There were strong positive correlations between TV, RCV and PV and cardiac end-diastolic wall mass (all p<0.0001; r(2)=0.5). Increasing fatigue severity correlated negatively with lower PV (p=0.04; r(2)=0.2). There were no relationships between any MR or volume measurements and length of history, suggesting that deconditioning was unlikely to be the cause of these abnormalities.

CONCLUSIONS: This study confirms an association between reduced cardiac volumes and blood volume in CFS. Lack of relationship between length of disease, cardiac and plasma volumes suggests findings are not secondary to deconditioning. The relationship between plasma volume and severity of fatigue symptoms suggests a potential therapeutic target in CFS.

 

Source: Newton JL, Finkelmeyer A, Petrides G, Frith J, Hodgson T, Maclachlan L, MacGowan G, Blamire AM. Reduced cardiac volumes in chronic fatigue syndrome associate with plasma volume but not length of disease: a cohort study. Open Heart. 2016 Jun 24;3(1):e000381. doi: 10.1136/openhrt-2015-000381. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932290/ (Full article)

 

Decreased oxygen extraction during cardiopulmonary exercise test in patients with chronic fatigue syndrome

Abstract:

BACKGROUND: The insufficient metabolic adaptation to exercise in Chronic Fatigue Syndrome (CFS) is still being debated and poorly understood.

METHODS: We analysed the cardiopulmonary exercise tests of CFS patients, idiopathic chronic fatigue (CFI) patients and healthy visitors. Continuous non-invasive measurement of the cardiac output by Nexfin (BMEYE B.V. Amsterdam, the Netherlands) was added to the cardiopulmonary exercise tests. The peak oxygen extraction by muscle cells and the increase of cardiac output relative to the increase of oxygen uptake (ΔQ’/ΔV’O₂) were measured, calculated from the cardiac output and the oxygen uptake during incremental exercise.

RESULTS: The peak oxygen extraction by muscle cells was 10.83 ± 2.80 ml/100ml in 178 CFS women, 11.62 ± 2.90 ml/100 ml in 172 CFI, and 13.45 ± 2.72 ml/100 ml in 11 healthy women (ANOVA: P=0.001), 13.66 ± 3.31 ml/100 ml in 25 CFS men, 14.63 ± 4.38 ml/100 ml in 51 CFI, and 19.52 ± 6.53 ml/100 ml in 7 healthy men (ANOVA: P=0.008).The ΔQ’/ΔV’O₂ was > 6 L/L (normal ΔQ’/ΔV’O₂ ≈ 5 L/L) in 70% of the patients and in 22% of the healthy group.

CONCLUSION: Low oxygen uptake by muscle cells causes exercise intolerance in a majority of CFS patients, indicating insufficient metabolic adaptation to incremental exercise. The high increase of the cardiac output relative to the increase of oxygen uptake argues against deconditioning as a cause for physical impairment in these patients.

 

Source: Vermeulen RC, Vermeulen van Eck IW. Decreased oxygen extraction during cardiopulmonary exercise test in patients with chronic fatigue syndrome. J Transl Med. 2014 Jan 23;12:20. doi: 10.1186/1479-5876-12-20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903040/ (Full article)’

 

Discriminative validity of metabolic and workload measurements for identifying people with chronic fatigue syndrome

Abstract:

BACKGROUND: Reduced functional capacity and postexertion fatigue after physical activity are hallmark symptoms of chronic fatigue syndrome (CFS) and may even qualify for biomarker status. That these symptoms are often delayed may explain the equivocal results for clinical cardiopulmonary exercise testing in people with CFS. Test reproducibility in people who are healthy is well documented. Test reproducibility may not be achievable in people with CFS because of delayed symptoms.

OBJECTIVE: The objective of this study was to determine the discriminative validity of objective measurements obtained during cardiopulmonary exercise testing to distinguish participants with CFS from participants who did not have a disability but were sedentary.

DESIGN: A prospective cohort study was conducted.

METHODS: Gas exchange data, workloads, and related physiological parameters were compared in 51 participants with CFS and 10 control participants, all women, for 2 maximal exercise tests separated by 24 hours.

RESULTS: Multivariate analysis showed no significant differences between control participants and participants with CFS for test 1. However, for test 2, participants with CFS achieved significantly lower values for oxygen consumption and workload at peak exercise and at the ventilatory or anaerobic threshold. Follow-up classification analysis differentiated between groups with an overall accuracy of 95.1%.

LIMITATIONS: Only individuals with CFS who were able to undergo exercise testing were included in this study. Individuals who were unable to meet the criteria for maximal effort during both tests, were unable to complete the 2-day protocol, or displayed overt cardiovascular abnormalities were excluded from the analysis.

CONCLUSIONS: The lack of any significant differences between groups for the first exercise test would appear to support a deconditioning hypothesis for CFS symptoms. However, the results from the second test indicated the presence of CFS-related postexertion fatigue. It might be concluded that a single exercise test is insufficient to reliably demonstrate functional impairment in people with CFS. A second test might be necessary to document the atypical recovery response and protracted fatigue possibly unique to CFS, which can severely limit productivity in the home and workplace.

 

Source: Snell CR, Stevens SR, Davenport TE, Van Ness JM.Discriminative validity of metabolic and workload measurements for identifying people with chronic fatigue syndrome. Phys Ther. 2013 Nov;93(11):1484-92. doi: 10.2522/ptj.20110368. Epub 2013 Jun 27. https://academic.oup.com/ptj/article/93/11/1484/2735315/Discriminative-Validity-of-Metabolic-and-Workload?searchresult=1 (Full article)

 

A longitudinal study of physical activity and body mass index among persons with unexplained chronic fatigue

Abstract:

OBJECTIVE AND METHODS: A cohort of 100 patients with unexplained chronic fatigue (CF) was assessed longitudinally for 1.5 years to determine if physical activity (kcal expended), exercise capacity (VO(2)max), perceived exertion, and body mass index (BMI) changed over time and were associated with changes in CF-related clinical status.

RESULTS: BMI increased significantly over time but did not predict changes in clinical status. Increasing energy expenditure was associated with increasing vitality and decreasing CF symptom severity over time, and decreasing perceived exertion was associated with increasing physical functioning. However, increasing perceived exertion was also associated with increasing CF symptoms.

CONCLUSIONS: These data do not support models that posit associations between CF and deconditioning.

 

Source: Schmaling KB, Fiedelak JI, Bader J, Buchwald D. A longitudinal study of physical activity and body mass index among persons with unexplained chronic fatigue. J Psychosom Res. 2005 Apr;58(4):375-81. http://www.ncbi.nlm.nih.gov/pubmed/15992573