Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome

Abstract:

AIMS: To investigate in detail various biochemical and pathophysiological indices of muscle pathology in acute onset post-viral fatigue syndrome (PVFS).

METHODS: Twenty three patients with PVFS (of mean duration 4.6 years) were subjected to needle biopsy for histomorphometry and total RNA contents. Plasma analysis included serology and creatine kinase activities. Indices of whole body mass were also measured–namely, whole body potassium content and plasma carnosinase activities.

RESULTS: About 80% of the patients had serology indicative of persistent enteroviral infection as determined by VP1 antigen assay. Only about 10% of that same group of patients had serological indications of current enterovirus infection by IgM assay; a separate subset of 10% showed antibody changes suggestive of reactivation of Epstein-Barr virus. Quantitative morphometric analysis of skeletal muscle fibres indicated that the quadriceps muscle was normal or displayed only minor abnormalities in 22 patients. The Quetelet’s Index (body mass index) and whole-body potassium values (index of lean body mass) were not affected in PVFS. The mean plasma carnosinase and creatinine kinase activities were also generally normal in these patients. The mean muscle RNA composition–mg RNA/mg DNA: was significantly reduced in acute onset PVFS by about 15%. The protein:DNA ratio was not significantly affected.

CONCLUSIONS: Patients with acute onset PVFS, therefore, lose muscle protein synthetic potential, but not muscle bulk. Histopathology is consistent with these observations. These perturbations may contribute to the apparent feature of perceived muscle weakness associated with the persistent viral infection in the muscle themselves.

 

Source: Preedy VR, Smith DG, Salisbury JR, Peters TJ. Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome. J Clin Pathol. 1993 Aug;46(8):722-6. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC501456/

 

Muscle histopathology and physiology in chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is characterized by fatigue at rest which is made worse by exercise. Previous biopsy studies on small numbers of CFS patients have shown a range of morphological changes to which have been attributed fatigue and myalgia.

We have now studied 108 patients with CFS or muscle pain and 22 normal volunteers by light and electron microscopy. There was no consistent correlation between symptoms and changes in fibre type prevalence, fibre size, degenerative or regenerative features, glycogen depletion, or mitochondrial abnormalities. Physiological contractile properties of quadriceps (maximal isometric force generation, frequency: force characteristics and relaxation rate) were also examined before and for up to 48 hours after a symptom-limited incremental cycle ergometer exercise test in 12 CFS patients and 12 normal volunteers.

Voluntary and stimulated force characteristics were normal at rest and during recovery. Exercise duration was similar in the two groups although CFS patients had higher perceived exertion scores in relation to heart rate during exercise, indicating a reduced effort sensation threshold. On physiological and pathological grounds it is clear that CFS is not a myopathy. Psychological/psychiatric factors appear to be of greater importance in this condition.

 

Source: Edwards RH1, Gibson H, Clague JE, Helliwell T. Muscle histopathology and physiology in chronic fatigue syndrome. Ciba Found Symp. 1993;173:102-17; discussion 117-31. http://www.ncbi.nlm.nih.gov/pubmed/8491096

 

Chronic fatigue syndrome: studies on skeletal muscle

Abstract:

Chronic fatigue syndrome represents a poorly defined disease with protean clinical manifestations, the majority of them expressed as a muscle fatigue or as inability to maintain the expected muscle strength.

In the present work we studied muscle function and muscle histopathology in 20 patients fulfilling the proposed criteria for chronic fatigue syndrome. Special interest is directed towards the immunoreactive expression of class I MHC molecules comparing some inflammatory and virus-related myopathies with muscles from chronic fatigue syndrome.

Only minor morphological changes were detected in 9 out of 20 patients of the series. The nonspecific morphological changes in muscle tissue and the lack of class I MHC expression does not support the viral etiology of muscle fatigue in chronic fatigue syndrome. In contrast with the reported clinical improvement with high doses of essential fatty acids, our patients’ clinical condition did not improve after three months of L-carnitine therapy.

 

Source: Grau JM, Casademont J, Pedrol E, Fernández-Solà J, Cardellach F, Barros N, Urbano-Márquez A. Chronic fatigue syndrome: studies on skeletal muscle. Clin Neuropathol. 1992 Nov-Dec;11(6):329-32. http://www.ncbi.nlm.nih.gov/pubmed/1473316