Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue

Abstract:

COVID-19 leads to severe respiratory problems, but also to long-COVID syndrome associated primarily with cognitive dysfunction and fatigue. Long-COVID syndrome symptoms, especially brain fog, are similar to those experienced by patients undertaking or following chemotherapy for cancer (chemofog or chemobrain), as well in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or mast cell activation syndrome (MCAS). The pathogenesis of brain fog in these illnesses is presently unknown but may involve neuroinflammation via mast cells stimulated by pathogenic and stress stimuli to release mediators that activate microglia and lead to inflammation in the hypothalamus. These processes could be mitigated by phytosomal formulation (in olive pomace oil) of the natural flavonoid luteolin.

Source: Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. Biofactors. 2021 Apr 12. doi: 10.1002/biof.1726. Epub ahead of print. PMID: 33847020. https://pubmed.ncbi.nlm.nih.gov/33847020/

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis?

Abstract:
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with severe impairment of daily functioning and associated symptoms. A significant percentage of ME/CFS patients remains undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, mostly with mitochondrial dysfunction, resulting in reduced oxidative metabolism. Mitochondrial dysfunction may be further contributing to the ME/CSF symptomatology by extracellular secretion of mitochondrial DNA, which could create an “innate” inflammatory state in the hypothalamus, thus disrupting normal homeostasis. We propose that stimulation of hypothalamic mast cells activates microglia leading to focal inflammation in the brain and disturbed homeostasis.

Source: Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis? J Pharmacol Exp Ther. 2018 Aug 3. pii: jpet.118.250845. doi: 10.1124/jpet.118.250845. [Epub ahead of print]   http://jpet.aspetjournals.org/content/early/2018/08/03/jpet.118.250845.long (Full article)