New light shed on cause of chronic fatigue syndrome

New research findings may shed new light on the potential cause of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME).

Researchers from Griffith University’s National Centre for Neuroimmunology and Emerging Diseases (NCNED) — part of the new Menzies Health Institute Queensland — have uncovered significant factors contributing to the pathology of this illness.

The results reveal genetic changes in important receptors associated with immunological and cellular function and contribute to the development of this complex illness.

“These findings have been achieved through a team effort involving researchers, patients, funding bodies, clinicians and the support of Griffith University and the Queensland Government,” say chief investigators Professor Sonya Marshall-Gradisnik and Professor Donald Staines.

Co-researcher and consultant immunologist Professor Pete Smith said that important signalling mechanisms are disrupted as a result of these genetic changes involving the detection and response to threats.

“These are primitive genes that are involved in many cellular signals in the brain, gut, cardiovascular and immune systems, as well as in the mediation of pain.”

These research findings coincide with International Neuroimmune Awareness week commencing Monday 11 May.

The Griffith Health Centre on the university’s Gold Coast campus is being lit up each evening from 10 -12 May to raise awareness of neurological conditions such as CFS/ME as well as other conditions such as Fibromyalgia and Gulf War Syndrome.

“The lighting up of the Griffith Health Centre signifies Griffith’s commitment to the CFS patient community and our team approach to this research,” says Pro-Vice Chancellor (Health) Professor Allan Cripps.

CFS/ME is a highly debilitating disorder characterized by profound fatigue, muscle and joint pain, cerebral symptoms of impaired memory and concentration, impaired cardiovascular function, gut disorder and sensory dysfunction such as noise intolerance and balance disturbance. Many cases can continue for months or years. It is believed to affect around 250,000 Australians.

The research findings are to be presented at an international conference in London later this month.

Journal Reference: Sonya Marshall-Gradisnik, Donald Staines, Pete Smith, Bernd Nilius, Ekua Brenu, Sandra Ramos. Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. Immunology and Immunogenetics Insights, 2015; 1 DOI: 10.4137/III.S25147

 

Source: Griffith University. “New light shed on cause of chronic fatigue syndrome.” ScienceDaily. ScienceDaily, 11 May 2015. https://www.sciencedaily.com/releases/2015/05/150511172755.htm 

 

A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Abstract:

BACKGROUND: Chronic Fatigue Syndrome, also known as Myalgic Encephalomyelitis (CFS/ME) is a debilitating condition of unknown aetiology. It is characterized by a range of physiological effects including neurological, sensory and motor disturbances. This study examined candidate genes for the above clinical manifestations to identify single nucleotide polymorphism (SNP) alleles associated with CFS/ME compared with healthy controls.

METHODS: DNA was extracted and whole genome genotyping was performed using the HumanOmniExpress BeadChip array. Gene families for transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors, and acetylcholinesterase were targeted. The frequency of each SNP and their association between CFS/ME and healthy controls was examined using Fisher’s exact test, and to adjust for multiple testing, False Detection Rate (FDR) and Bonferroni corrections were applied (p < 0.05).

RESULTS: The study included 172 participants, consisting of 95 Fukuda defined CFS/ME patients (45.8 ± 8.9; 69 % female) and 77 healthy controls (42.3 ± 10.3; 63 % female). A total of 950 SNPs were included for analysis. 60 significant SNPs were associated with CFS/ME compared with healthy controls. After applying FDR and Bonferroni corrections, SNP rs2322333 in adrenergic receptor α1 (ADRA1A) was higher in CFS/ME compared with healthy controls (45.3 % vs. 23.4 %; p = 0.059). The genotype class that was homozygous minor (AA) was substantially lower in CFS/ME compared with healthy controls (4.2 % vs. 24.7 %).

CONCLUSIONS: This study reports for the first time the identification of ADRA1A and a possible association between CFS/ME and genotype classes. Further examination of the functional role of this class of adrenergic receptors may elucidate the cause of particular clinical manifestations observed in CFS/ME

 

Source: Johnston S, Staines D, Klein A, Marshall-Gradisnik S. A targeted genome association study examining transient receptor potential ion channels, acetylcholine receptors, and adrenergic receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. BMC Med Genet. 2016 Nov 11;17(1):79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105265/ (Full article)

 

Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

OBJECTIVE: The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients.

METHODS: A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software.

RESULTS: Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group.

CONCLUSION: This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

© The Author(s) 2016.

 

Source: Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res. 2016 Nov 10. pii: 0300060516671622. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/27834303

 

Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels

Abstract:

Transient receptor potential melastatin subfamily 3 (TRPM3) ion channels play a role in calcium (Ca2+ ) cell signalling. Reduced TRPM3 protein expression has been identified in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients. However, the significance of TRPM3 and association with intracellular Ca2+ mobilization has yet to be determined.

Fifteen CFS/ME patients (mean age 48·82 ± 9·83 years) and 25 healthy controls (mean age 39·2 ± 12·12 years) were examined. Isolated natural killer (NK) cells were labelled with fluorescent antibodies to determine TRPM3, CD107a and CD69 receptors on CD56dim CD16+ NK cells and CD56bright CD16dim/- NK cells. Ca2+ flux and NK cytotoxicity activity was measured under various stimulants, including pregnenolone sulphate (PregS), thapsigargin (TG), 2-aminoethoxydiphenyl borate (2APB) and ionomycin.

Unstimulated CD56bright CD16dim/- NK cells showed significantly reduced TRPM3 receptors in CFS/ME compared with healthy controls (HC). Ca2+ flux showed no significant difference between groups. Moreover, PregS-stimulated CD56bright CD16dim/- NK cells showed a significant increase in Ca2+ flux in CFS/ME patients compared with HC. By comparison, unstimulated CD56dim CD16+ NK cells showed no significant difference in both Ca2+ flux and TRPM3 expression. PregS-stimulated CD56dim CD16+ NK cells increased TRPM3 expression significantly in CFS/ME, but this was not associated with a significant increase in Ca2+ flux.

Furthermore, TG-stimulated CD56dim CD16+ NK cells increased K562 cell lysis prior to PregS stimulation in CFS/ME patients compared with HC. Differential expression of TRPM3 and Ca2+ flux between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in CFS/ME.

© 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

 

Source: Nguyen T, Johnston S, Clarke L, Smith P, Staines D, Marshall-Gradisnik S. Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels. Clin Exp Immunol. 2017 Feb;187(2):284-293. doi: 10.1111/cei.12882. Epub 2016 Nov 23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217865/ (Full article)

 

Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

Abstract:

BACKGROUND: The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME.

METHOD: Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years).

RESULTS: The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls.

CONCLUSIONS: In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.

 

Source: Chacko A, Staines DR, Johnston SC, Marshall-Gradisnik SM. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Gene Regul Syst Bio. 2016 Aug 28;10:85-93. doi: 10.4137/GRSB.S40036. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003121/ (Full article)

 

Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

Abstract:

Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated.

The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs.

A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results.

 

Source: Huth TK, Brenu EW, Staines DR, Marshall-Gradisnik SM. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Gene Regul Syst Bio. 2016 Jun 19;10:43-9. doi: 10.4137/GRSB.S39861. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913894/ (Full article)

 

Epidemiological characteristics of chronic fatigue syndrome/myalgic encephalomyelitis in Australian patients

Abstract:

BACKGROUND: No epidemiological investigations have previously been conducted in Australia according to the current clinical definitions of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). The aim of this study was to describe sociodemographic and illness characteristics of Australian patients with CFS/ME.

METHODS: A cross-sectional survey on the medical history of patients enrolled in an Australian CFS/ME research database between April 2013 and April 2015. Participants were classified according to Fukuda criteria and International Consensus Criteria.

RESULTS: A total of 535 patients diagnosed with CFS/ME by a primary care physician were identified. The mean age of all patients was 46.4 years (standard deviation 12.0); the majority were female (78.61%), Caucasian, and highly educated. Of these, 30.28% met Fukuda criteria. A further 31.96% met both Fukuda criteria and International Consensus Criteria. There were 14.58% reporting chronic fatigue but did not meet criteria for CFS/ME and 23.18% were considered noncases due to exclusionary conditions. Within those meeting CFS/ME criteria, the most common events prior to illness included cold or flu, gastrointestinal illness, and periods of undue stress. Of the 60 symptoms surveyed, fatigue, cognitive, and short-term memory symptoms, headaches, muscle and joint pain, unrefreshed sleep, sensory disturbances, muscle weakness, and intolerance to extremes of temperature were the most commonly occurring symptoms (reported by more than two-thirds of patients). Significant differences in symptom occurrence between Fukuda- and International Consensus Criteria-defined cases were also identified.

CONCLUSION: This is the first study to summarize sociodemographic and illness characteristics of a cohort of Australian CFS/ME patients. This is vital for identifying potential risk factors and predictors associated with CFS/ME and for guiding decisions regarding health care provision, diagnosis, and management.

 

Source: Johnston SC, Staines DR, Marshall-Gradisnik SM. Epidemiological characteristics of chronic fatigue syndrome/myalgic encephalomyelitis in Australian patients. Clin Epidemiol. 2016 May 17;8:97-107. doi: 10.2147/CLEP.S96797. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878662/ (Full article)

 

Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients

Abstract:

BACKGROUND: Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19(+) B cells, CD56(bright) and CD56(dim) cell populations from CFS/ME patients.

RESULTS: TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56(bright) TRPM3 35.72 % ± 7.37; CD56(dim) 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19(+) B cells (1.56 ± 0.191) and CD56(bright) NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19(+) B lymphocytes. CD56(bright) NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients.

CONCLUSIONS: The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.

 

Source: Nguyen T, Staines D, Nilius B, Smith P, Marshall-Gradisnik S. Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients. Biol Res. 2016 May 31;49(1):27. doi: 10.1186/s40659-016-0087-2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888729/ (Full article)

 

A Systematic Review of Drug Therapies for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Abstract:

PURPOSE: The pathogenesis of chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) is complex and remains poorly understood. Evidence regarding the use of drug therapies in CFS/ME is currently limited and conflicting. The aim of this systematic review was to examine the existing evidence on the efficacy of drug therapies and determine whether any can be recommended for patients with CFS/ME.

METHODS: MEDLINE, EMBASE, and PubMed databases were searched from the start of their records to March 2016 to identify relevant studies. Randomized controlled trials focusing solely on drug therapy to alleviate and/or eliminate chronic fatigue symptoms were included in the review. Any trials that considered graded exercise therapy, cognitive behavior therapy, adaptive pacing, or any other nonpharmaceutical treatment plans were excluded. The inclusion criteria were examined to ensure that study participants met specific CFS/ME diagnostic criteria. Study size, intervention, and end point outcome domains were summarized.

FINDINGS: A total of 1039 studies were identified with the search terms; 26 studies met all the criteria and were considered suitable for review. Three different diagnostic criteria were identified: the Holmes criteria, International Consensus Criteria, and the Fukuda criteria. Primary outcomes were identified as fatigue, pain, mood, neurocognitive dysfunction and sleep quality, symptom severity, functional status, and well-being or overall health status. Twenty pharmaceutical classes were trialed. Ten medications were shown to be slightly to moderately effective in their respective study groups (P < 0.05).

IMPLICATIONS: These findings indicate that no universal pharmaceutical treatment can be recommended. The unknown etiology of CFS/ME, and complications arising from its heterogeneous nature, contributes to the lack of clear evidence for pharmaceutical interventions. However, patients report using a large number and variety of medications. This finding highlights the need for trials with clearly defined CFS/ME cohorts. Trials based on more specific criteria such as the International Consensus Criteria are recommended to identify specific subgroups of patients in whom treatments may be beneficial.

Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

 

Source: Collatz A, Johnston SC, Staines DR, Marshall-Gradisnik SM. A Systematic Review of Drug Therapies for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Clin Ther. 2016 Jun;38(6):1263-1271.e9. doi: 10.1016/j.clinthera.2016.04.038. Epub 2016 May 24. https://www.ncbi.nlm.nih.gov/pubmed/27229907

 

Progressive brain changes in patients with chronic fatigue syndrome: A longitudinal MRI study

Abstract:

PURPOSE: To examine progressive brain changes associated with chronic fatigue syndrome (CFS).

MATERIALS AND METHODS: We investigated progressive brain changes with longitudinal MRI in 15 CFS and 10 normal controls (NCs) scanned twice 6 years apart on the same 1.5 Tesla (T) scanner. MR images yielded gray matter (GM) volumes, white matter (WM) volumes, and T1- and T2-weighted signal intensities (T1w and T2w). Each participant was characterized with Bell disability scores, and somatic and neurological symptom scores. We tested for differences in longitudinal changes between CFS and NC groups, inter group differences between pooled CFS and pooled NC populations, and correlations between MRI and symptom scores using voxel based morphometry. The analysis methodologies were first optimized using simulated atrophy.

RESULTS: We found a significant decrease in WM volumes in the left inferior fronto-occipital fasciculus (IFOF) in CFS while in NCs it was unchanged (family wise error adjusted cluster level P value, PFWE < 0.05). This longitudinal finding was consolidated by the group comparisons which detected significantly decreased regional WM volumes in adjacent regions (PFWE< 0.05) and decreased GM and blood volumes in contralateral regions (PFWE < 0.05). Moreover, the regional GM and WM volumes and T2w in those areas showed significant correlations with CFS symptom scores (PFWE < 0.05).

CONCLUSION: The results suggested that CFS is associated with IFOF WM deficits which continue to deteriorate at an abnormal rate. J. Magn. Reson. Imaging 2016;44:1301-1311.

© 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

 

Source: Shan ZY, Kwiatek R, Burnet R, Del Fante P, Staines DR, Marshall-Gradisnik SM, Barnden LR. Progressive brain changes in patients with chronic fatigue syndrome: A longitudinal MRI study. J Magn Reson Imaging. 2016 Nov;44(5):1301-1311. doi: 10.1002/jmri.25283. Epub 2016 Apr 28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111735/ (Full article)