Use Of Total-Body Pet Imaging To Identify Deep-Tissue Sars-Cov-2 Viral Reservoirs And T Cell Responses In Patients With Long Covid

Project Summary:

This study is the first in the world to use advanced imaging technologies to identify deep tissue SARS-CoV-2 reservoirs and T cell activity in LongCovid study participants. Specifically the team will use longitudinal ImmunoPET-CT imaging of radiolabeled SARS-CoV-2-specific monoclonal antibodies (mAbs) to identify SARS-CoV-2 tissue reservoirs in individuals with Long COVID. The project team is also using ImmunoPET-CT imaging to identify the spatial and temporal dynamics of tissue-based T cell activity in Long COVID study participants.

Tissue biopsy samples from the lymph node and gut will also be collected from Long COVID study participants undergoing imaging. These tissue samples will be analyzed for SARS-CoV-2 RNA, spike, and nucleocapsid proteins, other chronic viruses (e.g., Epstein-Barr virus and cytomegalovirus), and cellular immune responses. Data collected on the tissue samples will be correlated with the imaging data, so that potential viral reservoirs and T cell activity in study participants can be validated by overlapping methods.

Read full article HERE.

Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics

Abstract:

Background: SARS-CoV-2 is a highly infectious respiratory virus associated with coronavirus disease (COVID-19). Discoveries in the field revealed that inflammatory conditions exert a negative impact on bone metabolism; however, only limited studies reported the consequences of SARS-CoV-2 infection on skeletal homeostasis. Inflammatory immune cells (T helper—Th17 cells and macrophages) and their signature cytokines such as interleukin (IL)-6, IL-17, and tumor necrosis factor-alpha (TNF-α) are the major contributors to the cytokine storm observed in COVID-19 disease. Our group along with others has proven that an enhanced population of both inflammatory innate (Dendritic cells—DCs, macrophages, etc.) and adaptive (Th1, Th17, etc.) immune cells, along with their signature cytokines (IL-17, TNF-α, IFN-γ, IL-6, etc.), are associated with various inflammatory bone loss conditions. Moreover, several pieces of evidence suggest that SARS-CoV-2 infects various organs of the body via angiotensin-converting enzyme 2 (ACE2) receptors including bone cells (osteoblasts—OBs and osteoclasts—OCs). This evidence thus clearly highlights both the direct and indirect impact of SARS-CoV-2 on the physiological bone remodeling process. Moreover, data from the previous SARS-CoV outbreak in 2002–2004 revealed the long-term negative impact (decreased bone mineral density—BMDs) of these infections on bone health.

Methodology: We used the keywords “immunopathogenesis of SARS-CoV-2,” “SARS-CoV-2 and bone cells,” “factors influencing bone health and COVID-19,” “GUT microbiota,” and “COVID-19 and Bone health” to integrate the topics for making this review article by searching the following electronic databases: PubMed, Google Scholar, and Scopus.

Conclusion: Current evidence and reports indicate the direct relation between SARS-CoV-2 infection and bone health and thus warrant future research in this field. It would be imperative to assess the post-COVID-19 fracture risk of SARS-CoV-2-infected individuals by simultaneously monitoring them for bone metabolism/biochemical markers. Importantly, several emerging research suggest that dysbiosis of the gut microbiota—GM (established role in inflammatory bone loss conditions) is further involved in the severity of COVID-19 disease. In the present review, we thus also highlight the importance of dietary interventions including probiotics (modulating dysbiotic GM) as an adjunct therapeutic alternative in the treatment and management of long-term consequences of COVID-19 on bone health.

Source: Sapra L, Saini C, Garg B, Gupta R, Verma B, Mishra PK, Srivastava RK. Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics. Inflamm Res. 2022 Sep;71(9):1025-1040. doi: 10.1007/s00011-022-01616-9. Epub 2022 Jul 28. PMID: 35900380; PMCID: PMC9330992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330992/ (Full text)

The plasma metabolome of long COVID-19 patients two years after infection

Abstract:

Background One of the major challenges currently faced by global health systems is the prolonged COVID-19 syndrome (also known as “long COVID”) which has emerged as a consequence of the SARS-CoV-2 epidemic. The World Health Organization (WHO) recognized long COVID as a distinct clinical entity in 2021. It is estimated that at least 30% of patients who have had COVID-19 will develop long COVID. This has put a tremendous strain on still-overstretched healthcare systems around the world.

Methods In this study, our goal was to assess the plasma metabolome in a total of 108 samples collected from healthy controls, COVID-19 patients, and long COVID patients recruited in Mexico between 2020 and 2022. A targeted metabolomics approach using a combination of LC-MS/MS and FIA MS/MS was performed to quantify 108 metabolites. IL-17 and leptin concentrations were measured in long COVID patients by immunoenzymatic assay.

Results The comparison of paired COVID-19/post-COVID-19 samples revealed 53 metabolites that were statistically different (FDR < 0.05). Compared to controls, 29 metabolites remained dysregulated even after two years. Notably, glucose, kynurenine, and certain acylcarnitines continued to exhibit altered concentrations similar to the COVID-19 phase, while sphingomyelins and long saturated and monounsaturated LysoPCs, phenylalanine, butyric acid, and propionic acid levels normalized. Post-COVID-19 patients displayed a heterogeneous metabolic profile, with some showing no symptoms while others exhibiting a variable number of symptoms. Lactic acid, lactate/pyruvate ratio, ornithine/citrulline ratio, sarcosine, and arginine were identified as the most relevant metabolites for distinguishing patients with more complicated long COVID evolution. Additionally, IL-17 levels were significantly increased in these patients.

Conclusions Mitochondrial dysfunction, redox state imbalance, impaired energy metabolism, and chronic immune dysregulation are likely to be the main hallmarks of long COVID even two years after acute COVID-19 infection.

Source: Yamilé López-Hernández, Joel Monárrez Aquino, David Alejandro García López, Jiamin Zheng, Juan Carlos Borrego, Claudia Torres-Calzada, José Pedro Elizalde-Díaz, Rupasri Mandal, Mark Berjanskii, Eduardo Martínez-Martínez, Jesús Adrián López, David S. Wishart. The plasma metabolome of long COVID-19 patients two years after infection. doi: https://doi.org/10.1101/2023.05.03.23289456 (Full text)

Do Pre-existing Sleep Disorders Worsen Long COVID Fatigue and Brain Fog?

Abstract:

Introduction: Long COVID is common after COVID-19 infection and leads to functional limitations with most reporting substantial symptom burden from fatigue. Symptoms in sleep disorders are attributed to inflammatory dysregulation and may predispose to fatigue expression. We hypothesize prior diagnoses of sleep disorders are associated with severity of long COVID fatigue.
Methods: A retrospective EMR review was performed of 210 consecutive adult patients (9/2021 to 2/2022) referred at least 3 months after COVID-19 infection seen in a new community-based long COVID clinic. The intake process collected demographics, past medical history, functional questionnaires, and symptom checklists. Primary outcome was Fatigue Severity Scale (FSS) score. Sleep disorders were evaluated as a composite of self-reported insomnia, sleep disordered breathing, and restless legs syndrome as well as subset analyses of each disorder. Secondary outcome was physical functioning measured by ECOG performance scale. Linear analyses were used for FSS and ECOG analyses. Adjustors included age, sex, body mass index (BMI), and whether patient had COVID-19 hospitalization.
Results: Cohort was female (66.2%), aged 51.6±SD14.4 yrs, BMI 29.8 [IQR 26.2, 37.7]). Prior chronic insomnia was present in 9%, sleep disordered breathing in 23%, and RLS in 4%; the pooled history of sleep disorders was 30%. Fatigue was reported in 76% with mean FSS score of 5.44 [interquartile range, IQR: 4.11,6.44]; 48% reported brain fog. The interval between acute COVID infection and clinic evaluation was 10.4±5.34 months and had no association to FSS severity (r = 0.07, p = 0.30). Sleep disorders in aggregate, insomnia, and restless legs syndrome had no associations with fatigue or functional status. Sleep disordered breathing had an association to fatigue in unadjusted (β = 0.68, 95% confidence interval, [CI]:0.13,1.24), but not adjusted models (β = 0.53, 95%CI: -0.06,1.13). Sleep disorders both in aggregate and evaluated individually had no associations to brain fog.
Conclusion: A prior history of sleep disorders contributed little to post-COVID fatigue reported in those presenting to a community-based Long COVID clinic.

Source: Isabelle Carter and others, 0967 Do Pre-existing Sleep Disorders Worsen Long COVID Fatigue and Brain Fog?, Sleep, Volume 46, Issue Supplement_1, May 2023, Pages A426–A427, https://doi.org/10.1093/sleep/zsad077.0967 (Full text is available as PDF file)

Diagnostic value of 24-h ECG recording in Long COVID patients with postural orthostatic tachycardia syndrome

Abstract:

Background: Cardiovascular autonomic dysfunction (CVAD) is a major complication for a large proportion of Long COVID (LC) patients. The main phenotype of CVAD is postural orthostatic tachycardia syndrome (POTS), commonly observed as a sequalae of COVID infection, thus defining a subset of LC patients. POTS is a cardiovascular autonomic disorder characterized by an excessive heart rate (HR) increase and symptoms of orthostatic intolerance when assuming upright posture, occurring predominantly in young and middle-aged women. Since the start of COVID-19 pandemic it has been observed that up to 30% of patients with post-COVID-19 syndrome develop POTS with such symptoms as tachycardia, orthostatic intolerance, fatigue, and cognitive impairment. The heterogeneity of POTS symptoms makes the diagnosis and appropriate management of POTS more difficult and one of the first steps for clinicians is to develop and test relevant diagnostic methods for POTS.
Methods: Patients with persistent symptoms, 3 months after an acute SARS-CoV-2 infection were referred to the multi-disciplinary LC unit at a hospital in Sweden. Consecutive patients seen at this unit from 2021 to 2022 underwent a 24-h ECG recording. LC patients with POTS verified by active standing test and/or head-up tilt testing were prospectively enrolled in the study database and were compared with LC patients without POTS according to 3 specific analyses based on 24-h ECG recording : (1) cardiac autonomic activity expressed by heart rate variability, HRV (SDNN and RMSSD in ms) parameters, (2) awakening HR increase (HR mean 10 min before vs. 30 min after awakening) and (3) HR spikes (number/h if at least over than 30 bpm and at least during 30 s). Control group consisted of healthy subjects from 24-h ECG recordings database (HRV analysis) of a hospital in France. Data were expressed as mean (± standard deviation, SD) and frequencies (%).
Results: A total of 120 LC patients (mean age: 42.7 +/-9.97 y, 88% women) and 100 healthy subjects (mean age: 46.4 +/-10.2 y, 82% women) were included. LC with POTS (42%) was associated with (1) a decrease in most HRV parameters (mean SDNN: 86.8 +/-24.3 vs. 108.7 +/-24.1 ms, p=0.03), and the most reduced components were those related to the parasympathetic tone (mean RMSSD: 34,5 +/-20.4 vs. 45.6 +/-22.1 ms, p=0.04), (2) an abrupt and sustained increase in HR during the first 30 min after awakening (+30%, p<0.05) and (3) a higher number of HR spikes per h (1.4 +/-0.8 vs. 0.8 +/-0.7/h, p<0.001) compared with healthy subjects (HRV) and LC patients without POTS (awakenings and HR peaks) respectively.
Conclusion: A triple analysis of 24-h ECG recordings revealed presence of autonomic dysfunction in LC patients with POTS compared with those without POTS. This novel analysis may be introduced in the clinic for screening and therapy monitoring.

Source: D Hupin and others, Diagnostic value of 24-h ECG recording in Long COVID patients with postural orthostatic tachycardia syndrome, EP Europace, Volume 25, Issue Supplement_1, June 2023, euad122.626, https://doi.org/10.1093/europace/euad122.626 (Full text available as PDF file)

Autoantibody production is enhanced after mild SARS-CoV-2 infection despite vaccination in individuals with and without long COVID

Abstract:

Long COVID patients who experienced severe acute SARS-CoV-2 infection can present with humoral autoimmunity. However, whether mild SARS-CoV-2 infection increases autoantibody responses and whether vaccination can decrease autoimmunity in long COVID patients is unknown.

Here, we demonstrate that mild SARS-CoV-2 infection increases autoantibodies associated with systemic lupus erythematosus (SLE) and inflammatory myopathies in long COVID patients with persistent neurologic symptoms to a greater extent than COVID convalescent controls at 8 months post-infection. Furthermore, high titers of SLE-associated autoantibodies in long COVID patients are associated with impaired cognitive performance and greater symptom severity, and subsequent vaccination/booster does not decrease autoantibody titers.

In summary, we found that mild SARS-CoV-2 infection can induce persistent humoral autoimmunity in both long COVID patients and healthy COVID convalescents, suggesting that a reappraisal of vaccination and mitigation strategies is warranted.

Source: Visvabharathy L, Zhu C, Orban ZS, Yarnoff K, Palacio N, Jimenez M, Lim PH, Penaloza-MacMaster P, Koralnik IJ. Autoantibody production is enhanced after mild SARS-CoV-2 infection despite vaccination in individuals with and without long COVID. medRxiv [Preprint]. 2023 Apr 12:2023.04.07.23288243. doi: 10.1101/2023.04.07.23288243. PMID: 37090595; PMCID: PMC10120795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120795/ (Full text)

Risks of digestive diseases in long COVID: Evidence from a large-scale cohort study

Abstract:

Objectives This study aims to evaluate the effect of coronavirus disease 2019 (COVID-19) on the long-term risk of digestive diseases in the general population.

Design Large-scale population-based cohort study based on a prospective cohort.

Setting UK Biobank cohort linked to multiple nationwide electronic health records databases.

Participants The cohort consisted of 112,311 individuals who survived the initial 30 days following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as well as two control groups: a contemporary group (n = 359,671) without any history of COVID-19, and a historical control group (n = 370,979) that predated the COVID-19 outbreak.

Main outcome measures Main outcomes were predefined digestive diseases. Hazard ratios and corresponding 95% confidence intervals (CI) were computed utilizing the Cox regression models after inverse probability weighting.

Results Compared with the contemporary control group, patients with previous COVID-19 infection had higher risks of digestive diseases, including functional gastrointestinal disorders (hazard ratios [HR] 1.95 (95% CI 1.62 to 2.35)); peptic ulcer disease (HR 1.27 (1.04 to 1.56)); gastroesophageal reflux disease (GERD) (HR 1.46 (1.34 to 1.58)); inflammatory bowel diseases (HR 1.40 (1.02 to 1.90)); gallbladder disease (HR 1.28 (1.13 to 1.46)); severe liver disease (HR 1.46 (1.12 to 1.90)); non-alcoholic liver disease (HR 1.33 (1.15 to 1.55)); and pancreatic disease (HR 1.43 (1.17 to 1.74)). The risks of GERD were stepwise increased with severity of the acute phase of COVID-19 infection. The results were consistent when using the historical cohort as the control group.

Conclusions Our study provides important insights into the association between COVID-19 and the long-term risk of digestive system disorders. COVID-19 patients are at a higher risk of developing gastrointestinal disorders, with stepwise increased risk with the severity and persisting even after one year follow-up.

Source: Yuying Ma, Lijun Zhang, Rui Wei, Weiyu Dai, Ruijie Zeng, Dongling Luo, Rui Jiang, Huihuan Wu, Zewei Zhuo, Qi Yang, Jingwei Li, Felix W Leung, Chongyang Duan, Weihong Sha, Hao Chen. Risks of digestive diseases in long COVID: Evidence from a large-scale cohort study. medRxiv 2023.04.25.23289080; doi: https://doi.org/10.1101/2023.04.25.23289080 https://www.medrxiv.org/content/10.1101/2023.04.25.23289080v1.full-text (Full text)

Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC)

Abstract:

With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis.

In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.

Source: Sindhu MohandasPrasanna JagannathanTimothy J HenrichZaki A SherifChristian BimeErin QuinlanMichael A PortmanMarila GennaroJalees RehmanRECOVER Mechanistic Pathways Task Force (2023) Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC) eLife 12:e86014. https://elifesciences.org/articles/86014 (Full text)

Rheumatology and Long COVID: lessons from the study of fibromyalgia

Abstract:

Rheumatology, such as other subspecialties, has both a unique perspective to offer as well as an evolving role to play in the global COVID-19 pandemic. Our field has already contributed meaningfully to the development and repurposing of many of the immune-based therapeutics which are now standard treatments for severe forms of the disease as well as to the understanding of the epidemiology, risk factors and natural history of COVID-19 in immune-mediated inflammatory diseases. Still in evolution is our potential to contribute to burgeoning research efforts in the next phase of the pandemic: the syndrome of postacute sequelae of COVID-19 or Long COVID. While our field brings many assets to the study of Long COVID including our expertise in the investigation of chronic inflammation and autoimmunity, our Viewpoint focuses on the strong similarities between fibromyalgia (FM) and Long COVID. While one can speculate on how embracing and confident practising rheumatologists already are regarding these interrelationships, we assert that in the emerging field of Long COVID the potential lessons from the field of fibromyalgia care and research have been underappreciated and marginalised and most importantly now deserve a critical appraisal.

Source: Clauw DJ, Calabrese L. Rheumatology and Long COVID: lessons from the study of fibromyalgia. Ann Rheum Dis. 2023 May 25:ard-2023-224250. doi: 10.1136/ard-2023-224250. Epub ahead of print. PMID: 37230736. https://ard.bmj.com/content/early/2023/05/24/ard-2023-224250 (Full text)

Autonomic Nervous System Affection Due to Post Covid Syndrome

Identification of the Effects of Post Covid Syndrome on the Autonomic Nervous System With Heart Rate Variability

Post-Covid syndrome is defined as symptoms that develop in addition to respiratory symptoms in individuals who have had Covid-19 infection for more than 12 weeks. Symptoms such as fatigue, headache, cognitive impairment, dyspnea, heart palpitations, heat intolerance, digestive system disorders, sleep disorders, dermal problems, orthostatic intolerance come to the fore in individuals with post-Covid syndrome. It has been tried to be revealed in some studies that Covid-19 infection affects the autonomic nervous system (ANS) and the relationship between Post-Covid 19 syndrome and ANS dysfunction.
Heart rate variability (HRV) measurement method can be used to evaluate ANS activity. HRV is a non-invasive method and is a measure of the change in heart rate over a period of time. HRV is a scalar quantity that shows the time between two beats of the heart and defines the oscillations between the R-R intervals. In HRV measurements, time-dependent and frequency-dependent measurement results are obtained and from these measurements, time-dependent RMSSD (square root of the square of the difference of the R-R intervals) and frequency-dependent high-frequency (HF) and low frequency (LF) measurement components are used in relation to the sympathetic nervous system (CNS) and parasympathetic nervous system (PSS). HRV can be measured in short-term (5 minutes) in terms of measurement time.
The aim of this study is to clearly reveal the relationship between Post-Covid 19 syndrome and ANS dysfunction and to provide standardization related to HRV measurement method and sub-parameters.
Source: Ali Veysel Özden, M.D. Bahçeşehir University. Istanbul, Beşiktaş, Turkey, 34000. ICH GCP US Clinical Trials Registry, Clinical Trial NCT05502094 https://ichgcp.net/clinical-trials-registry/NCT05502094