Long COVID is associated with severe cognitive slowing: a multicentre cross-sectional study

Abstract:

Background: COVID-19 survivors may experience a wide range of chronic cognitive symptoms for months or years as part of post-COVID-19 conditions (PCC). To date, there is no definitive objective cognitive marker for PCC. We hypothesised that a key common deficit in people with PCC might be generalised cognitive slowing.

Methods: To examine cognitive slowing, patients with PCC completed two short web-based cognitive tasks, Simple Reaction Time (SRT) and Number Vigilance Test (NVT). 270 patients diagnosed with PCC at two different clinics in UK and Germany were compared to two control groups: individuals who contracted COVID-19 before but did not experience PCC after recovery (No-PCC group) and uninfected individuals (No-COVID group). All patients with PCC completed the study between May 18, 2021 and July 4, 2023 in Jena University Hospital, Jena, Germany and Long COVID clinic, Oxford, UK.

Findings: We identified pronounced cognitive slowing in patients with PCC, which distinguished them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. Cognitive slowing was evident even on a 30-s task measuring simple reaction time (SRT), with patients with PCC responding to stimuli ∼3 standard deviations slower than healthy controls. 53.5% of patients with PCC’s response speed was slower than 2 standard deviations from the control mean, indicating a high prevalence of cognitive slowing in PCC. This finding was replicated across two clinic samples in Germany and the UK. Comorbidities such as fatigue, depression, anxiety, sleep disturbance, and post-traumatic stress disorder did not account for the extent of cognitive slowing in patients with PCC. Furthermore, cognitive slowing on the SRT was highly correlated with the poor performance of patients with PCC on the NVT measure of sustained attention.

Interpretation: Together, these results robustly demonstrate pronounced cognitive slowing in people with PCC, which distinguishes them from age-matched healthy individuals who previously had symptomatic COVID-19 but did not manifest PCC. This might be an important factor contributing to some of the cognitive impairments reported in patients with PCC.

Source: Zhao S, Martin EM, Reuken PA, Scholcz A, Ganse-Dumrath A, Srowig A, Utech I, Kozik V, Radscheidt M, Brodoehl S, Stallmach A, Schwab M, Fraser E, Finke K, Husain M. Long COVID is associated with severe cognitive slowing: a multicentre cross-sectional study. EClinicalMedicine. 2024 Jan 25;68:102434. doi: 10.1016/j.eclinm.2024.102434. PMID: 38318123; PMCID: PMC10839583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839583/ (Full text)

Procedural Motor Memory Deficits in Patients With Long-COVID

Abstract:

Background and objectives: At least 15% of patients who recover from acute severe acute respiratory syndrome coronavirus 2 infection experience lasting symptoms (“Long-COVID”) including “brain fog” and deficits in declarative memory. It is not known if Long-COVID affects patients’ ability to form and retain procedural motor skill memories. The objective was to determine the ability of patients with Long-COVID to acquire and consolidate a new procedural motor skill over 2 training days. The primary outcome was to determine difference in early learning, measured as the increase in correct sequence typing speed over the initial 11 practice trials of a new skill. The secondary outcomes were initial and final typing speed on days 1 and 2, learning rate, overnight consolidation, and typing accuracy.

Methods: In this prospective, cross-sectional, online, case-control study, participants learned a sequential motor skill over 2 consecutive days (NCT05746624). Patients with Long-COVID (reporting persistent post-coronavirus disease 2019 [COVID-19] symptoms for more than 4 weeks) were recruited at the NIH. Patients were matched one-to-one by age and sex to controls recruited during the pandemic using a crowd-sourcing platform. Selection criteria included age 18-90 years, English speaking, right-handed, able to type with the left hand, denied active fever or respiratory infection, and no previous task exposure. Data were also compared with an age-matched and sex-matched control group who performed the task online before the COVID-19 pandemic (prepandemic controls).

Results: In total, 105 of 236 patients contacted agreed to participate and completed the experiment (mean ± SD age 46 ± 12.8 years, 82% female). Both healthy control groups had 105 participants (mean age 46 ± 13.1 and 46 ± 11.9 years, 82% female). Early learning was comparable across groups (Long-COVID: 0.36 ± 0.24 correct sequences/second, pandemic controls: 0.36 ± 0.53 prepandemic controls: 0.38 ± 0.57, patients vs pandemic controls [CI -0.068 to 0.067], vs prepandemic controls [CI -0.084 to 0.052], and between controls [CI -0.083 to 0.053], p = 0.82). Initial and final typing speeds on days 1 and 2 were slower in patients than controls. Patients with Long-COVID showed a significantly reduced overnight consolidation and a nonsignificant trend to reduced learning rates.

Discussion: Early learning was comparable in patients with Long-COVID and controls. Anomalous initial performance is consistent with executive dysfunction. Reduction in overnight consolidation may relate to deficits in procedural memory formation.

Source: Hayward W, Buch ER, Norato G, Iwane F, Dash D, Salamanca-Girón RF, Bartrum E, Walitt B, Nath A, Cohen LG. Procedural Motor Memory Deficits in Patients With Long-COVID. Neurology. 2024 Feb 13;102(3):e208073. doi: 10.1212/WNL.0000000000208073. Epub 2024 Jan 18. PMID: 38237090. https://pubmed.ncbi.nlm.nih.gov/38237090/

The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens

Abstract:

Background and objective: Severe acute respiratory syndrome coronavirus 2 attacks the neural system directly and indirectly via various systems, such as the nasal cavity, olfactory system, and facial nerves. Considering the high energy requirement, lack of antioxidant defenses, and high amounts of metal ions in the brain, oxidative damage is very harmful to the brain. Various neuropathic pain conditions, neurological disorders, and neuropsychiatric complications were reported in Coronavirus disease 2019, prolonged Coronavirus disease 2019, and after Coronavirus disease 2019 immunization. This manuscript offers a distinctive outlook on the interconnectedness between neurology and neuropsychiatry through its meticulous analysis of complications.

Discussion: After recovering from Coronavirus disease 2019, approximately half of the patients reported developing Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Long Coronavirus disease 2019 imaging reports illustrated the hypometabolism in various parts of the brain, such as olfactory bulbs, limbic/paralimbic domains, the brainstem, and the cerebellum. Ninety imaging and neuropathological studies of Coronavirus disease 2019 have shown evidence of white matter, brainstem, frontotemporal, and oculofrontal lesions. Emotional functions, such as pleasant, long/short-term memory, movement, cognition and cognition in decision-making are controlled by these regions. The neuroinflammation and the mechanisms of defense are well presented in the discussion. The role of microglia activation, Inducible NO synthase, Cyclooxygenases ½, Reactive oxygen species, neurotoxic toxins and pro-inflammatory cytokines, such as Interleukin-1 beta, Interleukin-6 and Tumor Necrosis Factor-alpha are highlighted in neuronal dysfunction and death. Nuclear factor kappa-light-chain-enhancer of activated B cells, Mitogen-activated protein kinase, Activator Protein 1, and Interferon regulatory factors are the main pathways involved in microglia activation in Coronavirus disease 2019 neuroinflammation.

Conclusion: The neurological aspect of Coronavirus disease 2019 should be highlighted. Neurological, psychological, and behavioral aspects of Coronavirus disease 2019, prolonged Coronavirus disease 2019, and Coronavirus disease 2019 vaccines can be the upcoming issues. We need a global awareness where this aspect of the disease should be more considered in health research.

Source: Zayeri ZD, Torabizadeh M, Kargar M, Kazemi H. The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens. Behav Brain Res. 2024 Jan 20;462:114868. doi: 10.1016/j.bbr.2024.114868. Epub ahead of print. PMID: 38246395. https://www.sciencedirect.com/science/article/abs/pii/S016643282400024X

THE ROLE OF α7 NICOTINIC ACETYLCHOLINE RECEPTORS IN POST-ACUTE SEQUELAE OF COVID-19

Abstract:

Post-Acute Sequelae of COVID-19 or Long COVID becomes evident some weeks to months following acute COVID-19. Symptoms include cognitive impairment and varying degrees of memory loss with no definitive etiologies or efficacious therapies forthcoming even after four years of the SARS-Cov2 pandemic virus. The aim of this review is to demonstrate the important role of α7 nicotinic acetylcholine receptors in both acute COVID-19 and Long COVID.

Evidence presented implicates immune mechanisms stimulated by SARS-Cov-2 S-protein fragment 674-685 that possesses homology with α7-specific ligands. Cognitive dysfunctions observed in Long COVID patients may be derived from anti-idiotypic α7-specific antibodies stimulated by (674-685)-specific antibodies. Therapeutic interventions capable of neutralizing these antibodies and restoring full functions of α7 nicotinic acetylcholine receptors appear to be of paramount importance in post-acute sequelae of COVID-19.

Source: Skok M. THE ROLE OF α7 NICOTINIC ACETYLCHOLINE RECEPTORS IN POST-ACUTE SEQUELAE OF COVID-19. Int J Biochem Cell Biol. 2024 Jan 11:106519. doi: 10.1016/j.biocel.2024.106519. Epub ahead of print. PMID: 38218363. https://www.sciencedirect.com/science/article/abs/pii/S1357272524000104

Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19

Abstract:

Although some studies have shown neuroimaging and neuropsychological alterations in post-COVID-19 patients, fewer combined neuroimaging and neuropsychology evaluations of individuals who presented a mild acute infection. Here we investigated cognitive dysfunction and brain changes in a group of mildly infected individuals.

We conducted a cross-sectional study of 97 consecutive subjects (median age of 41 years) without current or history of psychiatric symptoms (including anxiety and depression) after a mild infection, with a median of 79 days (and mean of 97 days) after diagnosis of COVID-19. We performed semi-structured interviews, neurological examinations, 3T-MRI scans, and neuropsychological assessments. For MRI analyses, we included a group of non-infected 77 controls. The MRI study included white matter (WM) investigation with diffusion tensor images (DTI) and functional connectivity with resting-state functional MRI (RS-fMRI).

The patients reported memory loss (36%), fatigue (31%) and headache (29%). The quantitative analyses confirmed symptoms of fatigue (83% of participants), excessive somnolence (35%), impaired phonemic verbal fluency (21%), impaired verbal categorical fluency (13%) and impaired logical memory immediate recall (16%). The WM analyses with DTI revealed higher axial diffusivity values in post-infected patients compared to controls.

Compared to controls, there were no significant differences in the functional connectivity of the posterior cingulum cortex. There were no significant correlations between neuropsychological scores and neuroimaging features (including DTI and RS-fMRI).

Our results suggest persistent cognitive impairment and subtle white matter abnormalities in individuals mildly infected without anxiety or depression symptoms. The longitudinal analyses will clarify whether these alterations are temporary or permanent.

Source: Scardua-Silva, L., Amorim da Costa, B., Karmann Aventurato, Í. et al. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci Rep 14, 1758 (2024). https://doi.org/10.1038/s41598-024-52005-7  https://www.nature.com/articles/s41598-024-52005-7 (Full text)

Explaining Long COVID: A Pioneer Cross-Sectional Study Supporting the Endocrine Hypothesis

Abstract:

Context: In some patients, symptoms may persist after COVID-19, defined as long COVID. Its pathogenesis is still debated and many hypotheses have been raised.

Objective: Our primary objective was to evaluate the corticotroph and somatotroph functions of patients previously infected with SARS-CoV-2 and experiencing post–COVID-19 syndrome to detect any deficiencies that may explain long COVID.

Methods: A cross-sectional study was conducted including patients who had previously contracted SARS-CoV-2 with a postinfection period of 3 months or less to 15 months, divided into 2 groups. The first group (G1) comprised fully recovered patients, while the second group (G2) included patients experiencing long COVID. The primary outcome was the comparison of corticotroph and somatotroph functions.

Results: A total of 64 patients were divided into 2 groups, each consisting of 32 patients. G2 exhibited more frequently anterior pituitary deficits compared to G1 (P = .045): for the corticotroph axis (G1: 6.3% vs G2: 28.1%) and for the somatotroph axis (G1: 31.3% vs G2: 59.4%). Baseline cortisol level was significantly lower in G2 (G1: 13.37 µg/dL vs G2: 11.59 µg/dL) (P = .045). The peak cortisol level was also lower in G2 (G1: 23.60 µg/dL vs G2: 19.14 µg/dL) (P = .01). For the somatotroph axis, the insulin growth factor-1 level was lower in G2 (G1: 146.03 ng/mL vs G2: 132.25 ng/mL) (P = .369). The peak growth hormone level was also lower in G2 (G1: 4.82 ng/mL vs G2: 2.89 ng/mL) (P = .041).

Conclusion: The results showed that long COVID patients in our cohort were more likely to have anterior pituitary deficiencies. The endocrine hypothesis involving anterior pituitary insufficiency can be considered to explain long COVID.

Source: Taieb Ach, Nassim Ben Haj Slama, Asma Gorchane, Asma Ben Abdelkrim, Meriem Garma, Nadia Ben Lasfar, Foued Bellazreg, Widéd Debbabi, Wissem Hachfi, Molka Chadli Chaieb, Monia Zaouali, Amel Letaief, Koussay Ach, Explaining Long COVID: A Pioneer Cross-Sectional Study Supporting the Endocrine Hypothesis, Journal of the Endocrine Society, Volume 8, Issue 3, March 2024, bvae003, https://doi.org/10.1210/jendso/bvae003 https://academic.oup.com/jes/advancearticle/doi/10.1210/jendso/bvae003/7517018 (Full text)

Impact of sleep disruption on cognitive function in patients with post-acute sequelae of SARS-CoV-2 infection: Initial findings from a Neuro-COVID-19 clinic

Abstract:

Introduction: Fatigue, brain fog and sleep disturbance are among the most common symptoms of post-acute sequelae of SARS-CoV-2 infection (PASC). We sought to determine the impact of sleep disruption on cognition and quality-of-life in patients with neurologic manifestations of PASC (Neuro-PASC).

Methods: Thirty-nine patients were recruited from Neuro-COVID-19 clinic. Mean age was 48.1 years, 71.8% were female, and 82% were never hospitalized for COVID-19. Patients were evaluated via clinical assessment, quality-of-life measures in domains of cognitive function, fatigue, sleep disturbance, anxiety, and depression, NIH toolbox cognitive tests, and 7 days of wrist actigraphy.

Results: The median number of neurologic symptoms attributed to PASC was 6, with brain fog being the most common in 89.7%. Regarding non-neurologic symptoms, 94.9% complained of fatigue and 74.4% of insomnia. Patients reported significant impairment in all quality-of-life domains and performed worse in a task of attention compared to a normative US population. Actigraphy showed Neuro-PASC patients had lower sleep efficiency, longer sleep latency (both p<0.001) and later sleep midpoint (p=0.039) compared to 71 age-matched healthy controls with no PASC history. Self-reported cognitive symptoms correlated with severity of fatigue (p<0.001), anxiety (p=0.05), and depression (p<0.01). Objective evidence of sleep disruption measured by wakefulness after sleep onset, sleep efficiency and latency were associated with decreased performance in attention and processing speed.

Conclusion: Prospective studies including larger populations of patients are needed to fully determine the interplay of sleep disruption on the cognitive function and quality of life of patients with PASC.

Source: Kathryn J Reid, Louis T Ingram, Millenia Jimenez, Zachary S Orban, Sabra M Abbott, Daniela Grimaldi, Kristen L Knutson, Phyllis C Zee, Igor J Koralnik, Mathew B Maas, Impact of sleep disruption on cognitive function in patients with post-acute sequelae of SARS-CoV-2 infection: Initial findings from a Neuro-COVID-19 clinic, SLEEP Advances, 2024;, zpae002, https://doi.org/10.1093/sleepadvances/zpae002 https://academic.oup.com/sleepadvances/advance-article/doi/10.1093/sleepadvances/zpae002/7517273 (Full text available as PDF file)

Characteristics of long COVID and the impact of COVID-19 vaccination on long COVID 2 years following COVID-19 infection: prospective cohort study

Abstract:

This prospective cohort study aimed to identify characteristics of long COVID and any potential mitigating effects of COVID-19 vaccinations in patients 24 months following COVID-19 infection. Adult patients diagnosed with COVID-19 between February 17, 2020, and March 24, 2020, were scheduled to visit the study hospital four times (6, 12, 18, and 24 months after infection) to assess their symptoms, quality of life, and mental health. Among the 235 patients, 121 (51.5%) completed the study visits. Of these, 59.5% were female, with a median age of 52 years. Mild to moderate disease severity were identified in 101 (83.4%) patients.

A total of 75 participants (62.0%) were still experiencing long COVID symptoms 24 months after acute infection. Fatigue, amnesia, difficulty concentrating, and insomnia were the most common symptoms. The frequency of neuropsychiatric symptoms did not differ based on vaccination status or the number of doses received. Quality of life improved over time for the participants, but 32.2% of respondents still reported anxiety/depression at the end of the study. Overall, our cohort demonstrates that long COVID can persist up to 24 months after COVID-19 infection, affecting mental health and quality of life.

Source: Kim, Y., Bae, S., Chang, HH. et al. Characteristics of long COVID and the impact of COVID-19 vaccination on long COVID 2 years following COVID-19 infection: prospective cohort study. Sci Rep 14, 854 (2024). https://doi.org/10.1038/s41598-023-50024-4 https://www.nature.com/articles/s41598-023-50024-4 (Full text)

Long post-COVID-19 postural tachycardia syndrome (PoTS): A novel case

Introduction

There are no established ESC/NICE guidelines for early risk preventive strategies for postural tachycardia syndrome following long COVID-19 infection.1 A lack of early multi-disciplinary input and risk preventive strategies for this population has led to significant cardiovascular implications such as postural tachycardia and syncope, contributing to long-term emotional distress in recent years.1,2

Case presentation

A previously fit 36-year-old woman was admitted to our tertiary centre with a 3-month history of palpitations, chest discomfort and dizziness that were prominent while standing and improved with recumbence. She also described her palpitations, which were sometimes associated with missed beats, and it took longer than expected (at least 10–15 minutes) to settle after postural changes. These symptoms had all significantly impacted on her daily physical activities and caused emotional distress. She gave a history of serious COVID-19 infection requiring hospital admission 4 months previously. She reported that she was treated as having COVID pneumonitis requiring antibiotics, oxygen and steroids but no intensive care admission. Since then, she had noticed frequent episodes of postural palpitations with chest tightness, which had led to her recent admission. On examination, she has normal cardiorespiratory findings and no features of systemic involvement. She has no other significant family and social history with regard to other cardiovascular risk factors.

Initially, she was enrolled into a postural assessment of resting heart rate and blood pressure when she had her symptoms of palpitations. Her resting heart rate was 100 bpm while standing. Interestingly, her resting heart rate returned to normal (54 bpm) after 10 minutes of supine position. Her blood pressure 100/60 while supine and 98/74 when standing, which had ruled out postural hypotension. Following this, an active stand test (tilt table test) was administered on subsequent day. Her electrocardiogram (Fig 1) revealed sinus tachycardia when she had episodes of palpitation but it returned to normal sinus rhythm with heart rate 60 bpm after 10 minutes of recumbent position from standing. All blood investigations, including full blood count, troponins, inflammatory markers and renal profile including electrolytes, revealed normal findings, which had ruled out other differentials.

Discussion

As a whole, these postural assessments (Tables 1 and 2) had met the criteria for definition of postural tachycardia syndrome2 (typical symptoms with significant heart rate increase of >30 beats per minute within 10 minutes of standing and without orthostatic hypotension). To support this, her echocardiogram showed no significant signs of structural heart disease and satisfactory blood investigations. Given her timing of her postural cardiovascular symptoms related to post-COVID-19 infection and criteria being met for postural assessment, she was finally diagnosed as having postural tachycardia syndrome as a cause for long-COVID-19 symptoms.3 Overall, she was advised to increase her fluid intake to 3 litres per day with increased salt intake, to use lower body compression garments and to take non-upright exercise.1 This was followed by early multidisciplinary team (MDT) input, including the recommendation of webinars on living with POTS and psychological counselling.2

Conclusion

It is well-recognised in recent literature that a diagnosis of PoTS post-COVID infection is easily overlooked as it does not associate with structural or arrhythmic heart disease and its specific aetiology is poorly defined apart from autonomic dysregulation.1,3 Therefore, more epidemiology study and detailed prospective research in long-COVID-19 patients are crucial for early recognition of this syndrome and long-term risk prevention.1,2

Source: Khin Kay Kay Kyaw. Long post-COVID-19 postural tachycardia syndrome (PoTS): A novel case. Clinical Medicine Nov 2023, 23 (Suppl 6) 48-49; DOI: 10.7861/clinmed.23-6-s48 https://www.rcpjournals.org/content/clinmedicine/23/Suppl_6/48 (Full text)

Preferential Impairment of Auditory Working Memory in Long COVID: An Observational Study of Undergraduate Medical Students

Abstract:

Background: Long COVID is a multisystem condition with prolonged symptoms that develop after recovery from the COVID-19 infection, often following a mild infection. Few studies have been conducted on cognitive function among medical students after recovery from mild COVID-19. This study aimed to assess the attention span and working memory (WM) capacity of medical students after six months of recovery.

Methods: A cross-sectional study was performed on 17 young adult medical students who had suffered a mild COVID-19 infection at least six months prior. Eighteen age-matched healthy medical students served as the controls. Audio-visual WM tasks and attention spans were assessed using computerized software for both the cases and controls.

Results: The mean ages of the case and control were 19.67±1.6 and 20.0±1.2 years, respectively. The most common symptoms among cases were fatigue (33%), weight loss (26%), and nasal stuffiness (13%). The overall proportion of correct responses across all visual and auditory WM tasks (p=0.085) and reaction times (p=0.609) did not differ between the cases and controls. However, the overall target hit rate of the auditory WM task was significantly lower in cases than in controls (p=0.002). This difference was not observed in the visual WM task (p=0.374).

Conclusion: In the current study, the overall WM functions (visual and auditory combined) and attention span did not differ between cases and controls. However, auditory WM performance was significantly impaired in patients compared with controls, indicating selective impairment of auditory WM in patients with long COVID.

Source: Manna S, Ghosh Dastidar S, S R, et al. (January 01, 2024) Preferential Impairment of Auditory Working Memory in Long COVID: An Observational Study of Undergraduate Medical Students. Cureus 16(1): e51457. doi:10.7759/cureus.51457 https://www.cureus.com/articles/217296-preferential-impairment-of-auditory-working-memory-in-long-covid-an-observational-study-of-undergraduate-medical-students#!/ (Full text)