Metabolomics study of the effect of Danggui Buxue Tang on rats with chronic fatigue syndrome

Abstract:

Danggui Buxue Tang (DBT), a traditional Chinese medicine formula for “invigorating qi and enriching blood”, has been reported to produce a good effect on chronic fatigue syndrome (CFS). However, the related mechanism remains largely unresolved. In this study, a metabolomics approach with gas chromatography coupled to mass spectrometry combined with pattern recognition was devised to estimate the extent to which DBT alleviated CFS induced by food restriction and force swimming in rats.

After four weeks of treatment, the endurance capability of rats was significantly better and the motionless time was significantly shorter in the DBT group than in CFS model group. Moreover, the activities of SOD and GSH-Px were increased, while the levels of MDA, IL-6 and TNF-α were decreased in the DBT treatment group. Fifteen significantly changed metabolites were observed in the serum of rats with CFS, which was reversed markedly by DBT treatment. Metabolic pathway analysis showed that DBT could possibly alleviate CFS in rats by regulating phenylalanine, tyrosine and tryptophan biosynthesis, glycine, serine and the metabolism of threonine, glycerolipid, glyoxylate, dicarboxylate and tyrosine. It was observed that the metabolism of glycine, serine and threonine was most closely related to the improvement of CFS by DBT treatment. This study showed that DBT could improve CFS effectively and metabolomics was a powerful means to gain insights into the traditional Chinese medicine formulas against CFS.

Source: Miao X, Li S, Xiao B, Yang J, Huang R. Metabolomics study of the effect of Danggui Buxue Tang on rats with chronic fatigue syndrome. Biomed Chromatogr. 2022 Apr 4:e5379. doi: 10.1002/bmc.5379. Epub ahead of print. PMID: 35373377.  https://pubmed.ncbi.nlm.nih.gov/35373377/

Preliminary determination of a molecular basis of chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS/ME) is a debilitating fatigue illness that has an unknown etiology. We studied 20 chronic fatigue syndrome (CFS) patients, who complied with the Oxford and American CDC definitions, and 45 non-CFS subjects.

Participants completed questionnaires, were clinically examined, and had first morning urine specimens collected, which were screened by gas chromatography-mass spectrometry for changes in metabolite excretion.

Multivariate analysis of the urinary metabolite profiles differed significantly in the CFS patients compared to the non-CFS patients (P < 0.004). The CFS patients had increases in aminohydroxy-N-methylpyrrolidine (P < 0.00003, referred to as chronic fatigue symptom urinary marker 1, or CFSUM1), tyrosine (P < 0.02), beta-alanine (P < 0.02), aconitic acid (P < 0.05), and succinic acid (P < 0.05) and reductions in an unidentified urinary metabolite, CFSUM2 (P < 0.0007), alanine (P < 0.005), and glutamic acid (P < 0.02). CFSUM1, beta-alanine, and CFSUM2 were found by discriminant function analysis to be the first, second, and third most important metabolites, respectively for discriminating between CFS and non-CFS subjects.

The abundances of CFSUM1 and beta-alanine were positively correlated with symptom incidence (P < 0.01 and P < 0.001, respectively), symptom severity, core CFS symptoms, and SCL-90-R somatization (P < 0.00001), suggesting a molecular basis for CFS.

 

Source: McGregor NR, Dunstan RH, Zerbes M, Butt HL, Roberts TK, Klineberg IJ. Preliminary determination of a molecular basis of chronic fatigue syndrome. Biochem Mol Med. 1996 Apr;57(2):73-80. http://www.ncbi.nlm.nih.gov/pubmed/8733884