Red Blood Cell Morphology Is Associated with Altered Hemorheological Properties and Fatigue in Patients with Long COVID

Simple Summary:
SARS-CoV-2 alters the properties of oxygen-carrying red blood cells (RBCs) through a possible deterioration of hemorheological properties, such as aggregation and deformability. However, long-term changes in these properties and a possible association with morphological abnormalities remain unknown. Therefore, this study aims to investigate changes in the above-mentioned RBC properties in Long-COVID (LC). Venous blood was collected from n = 30 diagnosed LC and n = 30 non-Long-COVID controls (non-LC). Hematological parameters were measured, as well as the aggregation, deformability, and morphology of the RBCs and the mechanical sensitivity index (MS), which reflects the functional capacity of RBCs to deform. The results indicate that hematological parameters were not altered in LC. However, LC showed higher overall aggregation parameters. RBC deformability was higher in LC compared to non-LC; however, MS was limited in this group. LC showed a higher percentage of RBCs with abnormal shapes, which was related to MS and to fatigue, which is considered the leading symptom of LC. It is concluded that the symptoms of LC and changes in the blood flow determining the properties of RBCs are related to the morphological changes in RBCs. Future studies should investigate the underlying causes in order to develop appropriate therapies for this relatively new disease.
Abstract:

Background: SARS-CoV-2 infection adversely affects rheological parameters, particularly red blood cell (RBC) aggregation and deformability, but whether these changes persist in patients suffering from Long-COVID (LC) and whether these changes are related to RBC morphology remain unknown.
Methods: Venous blood was collected from n = 30 diagnosed LC patients and n = 30 non-LC controls and RBC deformability, RBC aggregation, and hematological parameters were measured. In addition, RBCs were examined microscopically for morphological abnormalities. The mechanical sensitivity index (MS) was assessed in n = 15 LC and n = 15 non-LC samples.
Results: Hematological parameters did not differ between the groups. However, LC showed higher aggregation-related parameters. Although RBC deformability was higher in LC, MS, reflecting the functional capacity to deform, was limited in this group. RBCs from LC showed significantly more morphological abnormalities. The extent of morphological abnormalities correlated with MS and the FACIT-Fatigue score of the LC patients.
Conclusion: RBCs from LC show a high degree of morphological abnormalities, which might limit the blood flow determining RBC properties and also be related to fatigue symptomatology in LC. Approaches are now needed to understand the underlying cause of these alterations and to ameliorate these permanent changes.
Source: Grau M, Presche A, Krüger A-L, Bloch W, Haiduk B. Red Blood Cell Morphology Is Associated with Altered Hemorheological Properties and Fatigue in Patients with Long COVID. Biology. 2024; 13(11):948. https://doi.org/10.3390/biology13110948 https://www.mdpi.com/2079-7737/13/11/948 (Full text)

Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects

Abstract:

Several diseases (such as diabetes, cancer, and neurodegenerative disorders) affect the morpho-functional aspects of red blood cells, sometimes altering their normal metabolism. In this review, the hematological changes are evaluated, with particular focus on the morphology and metabolic aspects of erythrocytes. Changes in the functionality of such cells may, in fact, help provide important information about disease severity and progression. The viral infection causes significant damage to the blood cells that are altered in size, rigidity, and distribution width. Lower levels of hemoglobin and anemia have been reported in several studies, and an alteration in the concentration of antioxidant enzymes has been shown to promote a dangerous state of oxidative stress in red blood cells.
Patients with severe COVID-19 showed an increase in hematological changes, indicating a progressive worsening as COVID-19 severity progressed. Therefore, monitored hematological alterations in patients with COVID-19 may play an important role in the management of the disease and prevent the risk of a severe course of the disease. Finally, monitored changes in erythrocytes and blood, in general, may be one of the causes of the condition known as Long COVID.
Source: Russo A, Tellone E, Barreca D, Ficarra S, Laganà G. Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical Implications and Morpho-Functional Aspects. International Journal of Molecular Sciences. 2022; 23(4):2171. https://doi.org/10.3390/ijms23042171 https://www.mdpi.com/1422-0067/23/4/2171/htm (Full text)

Altered Erythrocyte biophysical properties in Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multi-systemic illness of unknown etiology affecting millions of individuals worldwide. In this work, we tested the hypothesis that erythrocyte biophysical properties are adversely affected in ME/CFS.

We tested erythrocyte deformability using a high-throughput microfluidic device which mimics microcapillaries. We perfused erythrocytes from ME/CFS patients and from age and sex matched healthy controls (n=14 pairs of donors) through a high-throughput microfluidic platform (5μmx5μm). We recorded cell movement at high speed (4000 fps), followed by image analysis to assess the following parameters: entry time (time required by cells to completely enter the test channels), average transit velocity (velocity of cells inside the test channels) and elongation index (ratio of the major diameter before and after deformation in the test channel). We observed that erythrocytes from ME/CFS patients had higher entry time, lower average transit velocity and lower elongation index as compared to healthy controls.

Taken together, this data shows that erythrocytes from ME/CFS patients have reduced deformability. To corroborate our findings, we measured the erythrocyte sedimentation rate for these donors which show that the erythrocytes from ME/CFS patients had lower sedimentation rates. To understand the basis for differences in deformability, we investigated changes in the fluidity of the membrane using pyrenedecanoic acid and observed that erythrocytes from ME/CFS patients have lower membrane fluidity. Zeta potential measurements showed that ME/CFS patients had lower net negative surface charge on the erythrocyte plasma membrane. Higher levels of reactive oxygen species in erythrocytes from ME/CFS patients were also observed. Using scanning electron microscopy, we also observed changes in erythrocyte morphology between ME/CFS patients and healthy controls.

Finally, preliminary studies show that erythrocytes from “recovering” ME/CFS patients do not show such differences, suggesting a connection between erythrocyte deformability and disease severity.

Source: Amit K. Saha, Brendan R. Schmidt, Julie Wilhelmy, Vy Nguyen, Justin K. Do, Vineeth C. Suja, Mohsen Nemat-Gorgani, Anand K. Ramasubramanian, Ronald W. Davis. Altered Erythrocyte Biophysical Properties in Chronic Fatigue Syndrome. Biophys. Journal. VOLUME 116, ISSUE 3, SUPPLEMENT 1, 122A, FEBRUARY 15, 2019. https://www.cell.com/biophysj/fulltext/S0006-3495(18)31946-5

Erythrocyte Deformability As a Potential Biomarker for Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is arguably the last major disease we know almost nothing about. It is a multi-systemic illness of unknown etiology affecting millions of individuals worldwide, with the capacity to persist for several years. ME/CFS is characterized by disabling fatigue of at least 6 months, accompanied serious fatigue and musculoskeletal pain, in addition to impaired short-term memory or concentration, and unrefreshing sleep or extended post-exertional. While the etiology of the disease is still debated, evidence suggest oxidative damage to immune and hematological systems as one of the pathophysiological mechanisms of the disease. Erythrocytes are potent scavengers of oxidative stress, and their shape changes appreciably in response to oxidative stress and certain inflammatory conditions including obesity and diabetes. The shape of erythrocytes change from biconcave discoid to an ellipsoid due shear flow in microcapillaries that provides a larger specific surface area-to-volume ratio for optimal microvascular perfusion and tissue oxygenation establishing the importance not only of total hematocrit but also of the capacity for large deformations in physiology. Clinically, ME/CFS patients show normal arterial oxygen saturation but nothing much is known about microvascular perfusion. In this work, we tested the hypothesis that the erythrocyte deformability in ME/CFS is adversely affected, using a combination of biophysical and biochemical techniques.

We tested the deformability of RBCs using a high-throughput microfluidic device which mimics blood flow through microcapillaries. We perfused RBCs (suspension in plasma) from ME/CFS patients and from age and sex matched healthy controls (n=9 pairs of donors) through a high-throughput microfluidic platform of 5µm width and 3-5 µm height. We recorded the movement of the cells at high speed (4000 fps), followed by image analysis to assess the following parameters: entry time (time required by the cells to completely enter the test channels), average transit velocity (velocity of the cells inside the test channels) and elongation index (ratio of the major diameter before and after deformation in the test channel). We observed that RBCs from ME/CFS patients had higher entry time (~12%, p<0.0001), lower average transit velocity (~17%, p<0.0001) and lower elongation index (~14%, p<0.0001) as compared to RBCs from healthy controls. Taken together, this data shows that RBCs from ME/CFS patients have reduced deformability. To corroborate our findings, we also measured the erythrocyte sedimentation rate (ESR) for these donors which show that the RBCs from ME/CFS patients had lower (~40%, p<0.01) sedimentation rates.

To understand the basis for differences in deformability, we investigated the changes in the fluidity of the membrane using a lateral diffusion assay using pyrenedecanoic acid (PDA), and observed that RBCs from ME/CFS patients have lower membrane fluidity (~30%, p<0.01). Apart from the fluidity, Zeta potential measurements showed that ME/CFS patients had lower net negative surface charge on the RBC plasma membrane (~18%, p<0.0001). Higher levels of reactive oxygen species (ROS) in RBCs from ME/CFS patients (~30%, p<0.008) were also observed, as compared to healthy controls. Using scanning electron microscopy (SEM), we also observed changes in RBC morphology between ME/CFS patients and healthy controls (presence of different morphological subclasses like biconcave disc, leptocyte, acanthocyte and burr cells; area and aspect ratio; levels of RBC aggregation). Despite these changes in RBC physiology, the hemoglobin levels remained comparable between healthy donors and ME/CFS patients. Finally, preliminary studies show that RBCs from recovering ME/CFS patients do not show such differences in cellular physiology, suggesting a connection between RBC deformability and disease severity.

Taken together, our data demonstrates that the significant decrease in deformability of RBCs from ME/CFS patients may have origins in oxidative stress, and suggests that altered microvascular perfusion can be a possible cause for ME/CFS symptoms. Our data also suggests that RBC deformability may serve as a potential biomarker for ME/CFS, albeit further studies are necessary for non-specific classification of the disease.

SourceSaha, A. K., Schmidt, B. R., Wilhelmy, J., Nguyen, V., Do, J., Suja, V. C., Nemat-Gorgani, M., Ramasubramanian, A. K., & Davis, R. W. (2018).Erythrocyte Deformability As a Potential Biomarker for Chronic Fatigue SyndromeBlood, 132(Suppl 1)4874Accessed November 28, 2018. https://doi.org/10.1182/blood-2018-99-117260.

Erythrocyte oxidative damage in chronic fatigue syndrome

Abstract:

BACKGROUND: It has been hypothesized that a link exists between erythrocyte metabolism (particularly redox metabolism) and erythrocyte shape and that both are related to erythrocyte deformability. The aim of this research is to confirm the results of earlier studies and to investigate a correlation between erythrocyte morphology and erythrocyte oxidative damage in chronic fatigue syndrome (CFS).

METHODS: Reduced glutathione (GSH), malondialdehyde (MDA), methemoglobin (metHb) and 2,3-diphosphoglyceric acid (2,3-DPG) were measured in 31 patients suffering from CFS and 41 healthy control subjects. Scanning electron microscopic studies of the erythrocytes from both groups were also carried out.

RESULTS: There was evidence of oxidative damage in CFS with statistically significant increases in 2,3-DPG (p < 0.05), metHb (p < 0.005) and MDA (p < 0.01). The CFS patients in this study also had significantly more stomatocytes in their blood than the normal subjects (p < 0.005).

CONCLUSIONS: There is a strong likelihood that the increase in erythrocyte antioxidant activity is associated with the presence of stomatocytes. The results of this study provide further evidence for the role of free radicals in the pathogenesis of CFS and a link between erythrocyte metabolism and erythrocyte shape.

 

Source: Richards RS, Wang L, Jelinek H. Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res. 2007 Jan;38(1):94-8. Epub 2006 Nov 3. https://www.ncbi.nlm.nih.gov/pubmed/17174731