Autoimmunity in Long Covid and POTS

Abstract:

Orthostatic intolerance and other autonomic dysfunction syndromes are emerging as distinct symptom clusters in Long Covid. Often accompanying these are common, multi-system constitutional features such as fatigue, malaise and skin rashes which can signify generalised immune dysregulation. At the same time, multiple autoantibodies are identified in both Covid-related autonomic disorders and non-Covid autonomic disorders, implying a possible underlying autoimmune pathology. The lack of specificity of these findings precludes direct interpretations of cause and association, but prevalence with its supporting evidence is compelling.

In this review, we discuss the role of the autonomic nervous and immune systems in Covid and Long Covid and their potential influence on symptoms and clinical practice. Additionally, overlap with non-Covid autonomic dysfunction is considered. Understanding these new disorders can inform both neuro-immunology and Long Covid management.

Source: Fatema-Zahra El-Rhermoul, Artur Fedorowski, Philip Eardley, Patricia Taraborrelli, Dimitrios Panagopoulos, Richard Sutton, Phang Boon Lim, Melanie Dani, Autoimmunity in Long Covid and POTS, Oxford Open Immunology, 2023;, iqad002, https://doi.org/10.1093/oxfimm/iqad002 (Full text available as PDF file)

Therapeutic Approaches to Dysautonomia in Childhood, with a Special Focus on Long COVID

Abstract:

Background: Dysautonomia seems to be important for the pathophysiology of psychosomatic diseases and, more recently, for long COVID. This concept may explain the clinical symptoms and could help open new therapeutic approaches.
Methods: We compared our data from an analysis of heart rate variability (HRV) in an active standing test in 28 adolescents who had developed an inappropriate sinus tachycardia (IST, n = 13) or postural orthostatic tachycardia syndrome (POTS, n = 15) after contracting COVID-19 disease and/or vaccination with 64 adolescents from our database who developed dysautonomia due to psychosomatic diseases prior to the COVID-19 pandemic. We prove the effects of our treatment: omega-3 fatty acid supplementation (O3-FA, n = 18) in addition to propranolol (low dose, up to 20-20-0 mg, n = 32) or ivabradine 5-5-0 mg (n = 17) on heart rate regulation and heart rate variability (HRV).
Results: The HRV data were not different between the adolescents with SARS-CoV-2-related disorders and the adolescents with dysautonomia prior to the pandemic. The heart rate increases in children with POTS while standing were significantly lower after low-dose propranolol (27.2 ± 17.4 bpm***), ivabradine (23.6 ± 8.12 bpm*), and O-3-FA (25.6 ± 8.4 bpm*). The heart rate in children with IST while lying/standing was significantly lower after propranolol (81.6 ± 10.1 bpm**/101.8 ± 18.8***), ivabradine (84.2 ± 8.4 bpm***/105.4 ± 14.6**), and O-3-FA (88.6 ± 7.9 bpm*/112.1/14.9*).
Conclusions: The HRV data of adolescents with dysautonomia after COVID-19 disease/vaccination are not significantly different from a historical control of adolescents with dysautonomia due to psychosomatic diseases prior to the pandemic. Low-dose propranolol > ivabradine > omega-3 fatty acids significantly decrease elevated heart rates in patients with IST and the heart rate increases in patients with POTS and may be beneficial in these children with dysautonomia.
Source: Buchhorn R. Therapeutic Approaches to Dysautonomia in Childhood, with a Special Focus on Long COVID. Children. 2023; 10(2):316. https://doi.org/10.3390/children10020316 https://www.mdpi.com/2227-9067/10/2/316 (Full text)

Autonomic dysfunction and postural orthostatic tachycardia syndrome in post-acute COVID-19 syndrome

Abstract:

The post-acute sequelae of COVID-19 present major problems for many patients, their physicians and the health-care system. They are unrelated to the severity of the initial infection, are often highly symptomatic and can occur after vaccination. Many sequelae involve cardiovascular autonomic dysfunction, with postural orthostatic tachycardia syndrome in 30% of individuals. Prognosis is unknown, and treatment is still unsatisfactory.

Source: Fedorowski A, Sutton R. Autonomic dysfunction and postural orthostatic tachycardia syndrome in post-acute COVID-19 syndrome. Nat Rev Cardiol. 2023 Feb 2:1–2. doi: 10.1038/s41569-023-00842-w. Epub ahead of print. PMID: 36732397; PMCID: PMC9893964. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893964/ (Full text)

Post-acute sequelae of SARS-CoV-2 (PASC) syndrome presenting as postural orthostatic tachycardia syndrome (POTS)

Abstract:

The novel SARS-CoV-2 emerged in 2019, and the global COVID-19 pandemic continues into 2022. It has been known that a subset of patients develops chronic, debilitating symptoms after otherwise complete recovery from acute infection of COVID-19.

Multiple terms have been used to describe this constellation of symptoms, including long COVID, long-haul COVID, and post-acute sequelae of SARS-CoV-2 syndrome (PASC). PASC is broadly defined as a wide range of new, returning, or ongoing symptoms at least four weeks after infection. Those patients are often seen in emergency departments after acute COVID- 19 infection, but their symptoms are not adequately managed because the underlying pathophysiology of PASC is not well understood.

Among patients with PASC, postural orthostatic tachycardic syndrome (POTS) has been increasingly recognized. POTS is one of the most common forms of autonomic dysfunction and defined by a sustained orthostatic tachycardia during active standing or head-up tilt test in the absence of orthostatic hypotension or other cardiopulmonary diseases. Because POTS is a treatable condition, it is important to recognize POTS among PASC patients. Herein, we reviewed the current literature on POTS and dysautonomia in PASC in order to better understand the overlap and distinction between these pathologies.

Source: Diekman S, Chung T. Post-acute sequelae of SARS-CoV-2 (PASC) syndrome presenting as postural orthostatic tachycardia syndrome (POTS). Clin Exp Emerg Med. 2023 Jan 30. doi: 10.15441/ceem.22.409. Epub ahead of print. PMID: 36718484. https://pubmed.ncbi.nlm.nih.gov/36718484/ (Full text available as PDF file)

Autonomic Nervous System Regulation Effects of Epipharyngeal Abrasive Therapy for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Associated With Chronic Epipharyngitis

Abstract:

Objective: To evaluate the autonomic nerve stimulation effect of epipharyngeal abrasive therapy (EAT) on myalgic encephalomyelitis/chronic fatigue syndrome (CFS) associated with chronic epipharyngitis. Heart rate variability analysis was performed. The study was conducted by analyzing heart rate variability.

Subjects and methods: A total of 29 patients with chronic epipharyngitis who underwent EAT from July 2017 to April 2018 were classified into two groups: 11 patients in the CFS group and 18 patients in the control group without CFS. The patients were classified as phase 1 during bed rest, phase 2 during nasal endoscopy, phase 3 during nasal abrasion, and phase 4 during oral abrasion. Electrocardiographic recordings were made, and autonomic function was compared and evaluated by measuring heart rate, coefficient of variation on R-R interval (CVRR), coefficient of component variance high frequency (ccvHF), and low frequency/ccvHF ratio (L/H) for each of the four phases. The Shapiro-Wilk test was performed to confirm the normality of the two groups, and the parametric test was selected. A repeated measures analysis of variance was performed to assess changes over time between the four events in the two groups. Multiple comparisons were corrected by the Bonferroni method. Comparisons between resting data and three events within each group were performed by paired t-test.

Results: The CFS group had an increased baseline heart rate compared to the control group, and the CFS group had a greater increase in parasympathetic activity and a decrease in heart rate with nasal abrasion. Oral abrasion elicited a pharyngeal reflex and increased heart rate and both sympathetic and parasympathetic activity.

Conclusion: The CFS group was in a state of dysautonomia due to autonomic overstimulation, with an elevated baseline heart rate. The CFS group was considered to be in a state of impaired autonomic homeostasis, with an increased likelihood that overstimulation would induce a pathological vagal reflex and the Reilly phenomenon would develop. The direct effects of EAT on the autonomic nervous system were considered to be vagus nerve stimulation and the regulation of autonomic function by opposing stimulation input to sympathetic and parasympathetic nerves. As an indirect effect, bleeding from the epipharyngeal mucosa due to abrasion was thought to restore the function of the cerebral venous and lymphatic excretory systems and the autonomic nerve center.

Source: Hirobumi I. Autonomic Nervous System Regulation Effects of Epipharyngeal Abrasive Therapy for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Associated With Chronic Epipharyngitis. Cureus. 2023 Jan 14;15(1):e33777. doi: 10.7759/cureus.33777. PMID: 36655156; PMCID: PMC9840732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840732/ (Full text)

Autonomic Nerve Involvement in Post-Acute Sequelae of SARS-CoV-2 Syndrome (PASC)

Abstract:

The novel SARS-CoV-2 virus and resulting COVID-19 global pandemic emerged in 2019 and continues into 2022. While mortality from COVID-19 is slowly declining, a subset of patients have developed chronic, debilitating symptoms following complete recovery from acute infection with COVID-19. Termed as post-acute sequelae of SARS-CoV-2 syndrome (PASC), the underlying pathophysiology of PASC is still not well understood.

Given the similarity between the clinical phenotypes of PASC and postural orthostatic tachycardia syndrome (POTS), it has been postulated that dysautonomia may play a role in the pathophysiology of PASC. However, there have been only a few studies that have examined autonomic function in PASC.

In this retrospective study, we performed an analysis of autonomic nerve function testing in PASC patients and compared the results with those of POTS patients and healthy controls. Our results suggest that a significant number of PASC patients have abnormal autonomic function tests, and their clinical features are indistinguishable from POTS.

Source: Chung TH, Azar A. Autonomic Nerve Involvement in Post-Acute Sequelae of SARS-CoV-2 Syndrome (PASC). J Clin Med. 2022 Dec 22;12(1):73. doi: 10.3390/jcm12010073. PMID: 36614874; PMCID: PMC9821608. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821608/ (Full text)

Investigating the possible mechanisms of autonomic dysfunction post-COVID-19

Abstract:

Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID.

The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly.

Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.

Source: Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci. 2022 Dec 24;245:103071. doi: 10.1016/j.autneu.2022.103071. Epub ahead of print. PMID: 36580747; PMCID: PMC9789535. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789535/ (Full text)

Stellate Ganglion Block for Long COVID Symptom Management: A Case Report

Abstract:

Stellate ganglion block (SGB) is gaining increasing acceptance as a treatment modality for various medical conditions. It works by blocking neuronal transmissions which in turn alleviates sympathetically-driven disease processes. Many of the prolonged sequelae of long COVID are thought to be mediated by dysregulation of the autonomic nervous system, and SGB is being investigated as a potential option for symptomatic management of long COVID. This case report demonstrates the efficacy of SGB in a previously healthy patient for the management of long COVID symptoms including fatigue, post-exertional malaise, shortness of breath, and gastrointestinal symptoms.

Source: Khan M H, Kirkpatrick K P, Deng Y, et al. (December 07, 2022) Stellate Ganglion Block for Long COVID Symptom Management: A Case Report. Cureus 14(12): e32295. doi:10.7759/cureus.32295 https://www.cureus.com/articles/127985-stellate-ganglion-block-for-long-covid-symptom-management-a-case-report (Full text)

Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults

Abstract:

Background: Autonomic dysfunction is a known complication of post-acute sequelae of SARS-CoV-2 (PASC)/long COVID, however prevalence and severity are unknown.

Objective: To assess the frequency, severity, and risk factors of autonomic dysfunction in PASC, and to determine whether severity of acute SARS-CoV-2 infection is associated with severity of autonomic dysfunction.

Design: Cross-sectional online survey of adults with PASC recruited through long COVID support groups between October 2020 and August 2021.

Participants: 2,413 adults ages 18-64 years with PASC including patients who had a confirmed positive test for COVID-19 (test-confirmed) and participants who were diagnosed with COVID-19 based on clinical symptoms alone.

Main measures: The main outcome measure was the Composite Autonomic Symptom 31 (COMPASS-31) total score, used to assess global autonomic dysfunction. Test-confirmed hospitalized vs. test-confirmed non-hospitalized participants were compared to determine if the severity of acute SARS-CoV-2 infection was associated with the severity autonomic dysfunction.

Key results: Sixty-six percent of PASC patients had a COMPASS-31 score >20, suggestive of moderate to severe autonomic dysfunction. COMPASS-31 scores did not differ between test-confirmed hospitalized and test-confirmed non-hospitalized participants [28.95 (15.62, 46.60) vs. 26.4 (13.75, 42.10); p = 0.06].

Conclusions: Evidence of moderate to severe autonomic dysfunction was seen in 66% of PASC patients in our study, independent of hospitalization status, suggesting that autonomic dysfunction is highly prevalent in the PASC population and independent of the severity of acute COVID-19 illness.

Source: Larsen NW, Stiles LE, Shaik R, Schneider L, Muppidi S, Tsui CT, Geng LN, Bonilla H, Miglis MG. Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Front Neurol. 2022 Oct 19;13:1012668. doi: 10.3389/fneur.2022.1012668. PMID: 36353127; PMCID: PMC9639503. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639503/ (Full text)

Autoimmune autonomic nervous system imbalance and conditions: Chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants

Abstract:

Chronic fatigue syndrome (CFS), fibromyalgia, silicone breast implants syndrome (SBIs), COVID and post-COVID syndrome (PCS), sick building syndrome (SBS), post-orthostatic tachycardia syndrome (POTS), autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants (ASIA) are frequently accompanied by clinical symptoms characteristic for dysautonomia: severe fatigue, dizziness, fogginess, memory loss, dry mouth and eyes, hearing dysfunction, tachycardia etc.

The recent discovery of an imbalance of autoantibodies against G protein-coupled receptors (GPCR) in some autoimmune diseases, post-COVID syndrome, SBIs allowed researchers to assume the novel mechanism in these conditions – autoimmune autonomic nervous system imbalance.

In this review, all data published on an imbalance of autoantibodies against GPCR, clinical symptoms and pathogenic mechanisms in CFS, Fibromyalgia, SBIs, COVID and PCS, SBS, POTS, and some autoimmune diseases were analyzed. Possible criteria to diagnose the autoimmune autonomic nervous system imbalance were created.

Source: A.M.Malkova, Y.Shoenfeld. Autoimmune autonomic nervous system imbalance and conditions: Chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Autoimmunity Reviews, 5 November 2022, 103230. https://www.sciencedirect.com/science/article/abs/pii/S1568997222002002 (Full text)