Exosome-Associated Mitochondrial DNA from Patients with ME/CFS Stimulates Human Cultured Microglia to Release IL-1β

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease that presents with fatigue, sleep disturbances, malaise, and cognitive problems. The pathogenesis of ME/CFS is presently unknown and serum levels of potential biomarkers have been inconsistent. Here we show that mitochondrial DNA (mtDNA) associated with serum exosomes, is increased in ME/CFS patients only after exercise. Moreover, exosomes isolated from patients with ME/CFS stimulate significant release of IL-1β from cultured human microglia. These results provide evidence that activation of microglia by serum-derived exosomes may serve as a potential novel pathogenetic factor and target for treatment of ME/CFS.

Source: Tsilioni I, Natelson B, Theoharides TC. Exosome-Associated Mitochondrial DNA from Patients with ME/CFS Stimulates Human Cultured Microglia to Release IL-1β. Eur J Neurosci. 2022 Sep 24. doi: 10.1111/ejn.15828. Epub ahead of print. PMID: 36153118. https://pubmed.ncbi.nlm.nih.gov/36153118/

Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome

Abstract:

The duration and severity of COVID-19 are related to age, comorbidities, and cytokine synthesis. This study evaluated the impact of these factors on patients with clinical presentations of COVID-19 in a Brazilian cohort.

A total of 317 patients diagnosed with COVID-19 were included; cases were distributed according to clinical status as severe (n=91), moderate (n=56) and mild (n=170). Of these patients, 92 had acute COVID-19 at sample collection, 90 had already recovered from COVID-19 without sequelae, and 135 had sequelae (long COVID syndrome).

In the acute COVID-19 group, patients with the severe form had higher IL-6 levels (p=0.0260). In the post-COVID-19 group, there was no significant difference in cytokine levels between groups with different clinical conditions. In the acute COVID-19 group, younger patients had higher levels of TNF-α, and patients without comorbidities had higher levels of TNF-α, IL-4 and IL-2 (p<0.05). In contrast, patients over age 60 with comorbidities had higher levels of IL-6. In the post-COVID-19 group, subjects with long COVID-19 had higher levels of IL-17 and IL-2 (p<0.05), and subjects without sequelae had higher levels of IL-10, IL-6 and IL- 4 (p<0.05).

Our results suggest that advanced age, comorbidities and elevated serum IL-6 levels are associated with severe COVID-19 and are good markers to differentiate severe from mild cases. Furthermore, high serum levels of IL-17 and IL-2 and low levels of IL-4 and IL-10 appear to constitute a cytokine profile of long COVID-19, and these markers are potential targets for COVID-19 treatment and prevention strategies.

Source: Queiroz MAF, Neves PFMD, Lima SS, Lopes JDC, Torres MKDS, Vallinoto IMVC, Bichara CDA, Dos Santos EF, de Brito MTFM, da Silva ALS, Leite MM, da Costa FP, Viana MNDSA, Rodrigues FBB, de Sarges KML, Cantanhede MHD, da Silva R, Bichara CNC, van den Berg AVS, Veríssimo AOL, Carvalho MDS, Henriques DF, Dos Santos CP, Nunes JAL, Costa IB, Viana GMR, Carneiro FRO, Palacios VRDCM, Quaresma JAS, Brasil-Costa I, Dos Santos EJM, Falcão LFM, Vallinoto ACR. Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome. Front Cell Infect Microbiol. 2022 Jun 30;12:922422. doi: 10.3389/fcimb.2022.922422. PMID: 35846757; PMCID: PMC9279918. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279918/ (Full text)

Evidence of previous SARS-CoV-2 infection in seronegative patients with long COVID

Abstract:

Background: There is currently no consensus on the diagnosis, definition, symptoms, or duration of COVID-19 illness. The diagnostic complexity of Long COVID is compounded in many patients who were or might have been infected with SARS-CoV-2 but not tested during the acute illness and/or are SARS-CoV-2 antibody negative.

Methods: Given the diagnostic conundrum of Long COVID, we set out to investigate SARS-CoV-2-specific T cell responses in patients with confirmed SARS-CoV-2 infection and/or Long COVID from a cohort of mostly non-hospitalised patients.

Findings: We discovered that IL-2 release (but not IFN-γ release) from T cells in response to SARS-CoV-2 peptides is both sensitive (75% +/-13%) and specific (88%+/-7%) for previous SARS-CoV-2 infection >6 months after a positive PCR test. We identified that 42-53% of patients with Long COVID, but without detectable SARS-CoV-2 antibodies, nonetheless have detectable SARS-CoV-2 specific T cell responses.

Interpretation: Our study reveals evidence (detectable T cell mediated IL-2 release) of previous SARS-CoV-2 infection in seronegative patients with Long COVID.

Funding: This work was funded by the Addenbrooke’s Charitable Trust (900276 to NS), NIHR award (G112259 to NS) and supported by the NIHR Cambridge Biomedical Research Centre. NJM is supported by the MRC (TSF MR/T032413/1) and NHSBT (WPA15-02). PJL is supported by the Wellcome Trust (PRF 210688/Z/18/Z, 084957/Z/08/Z), a Medical Research Council research grant MR/V011561/1 and the United Kingdom Research and a Innovation COVID Immunology Consortium grant (MR/V028448/1).

Source: Krishna BA, Lim EY, Mactavous L; NIHR BioResource Team, Lyons PA, Doffinger R, Bradley JR, Smith KGC, Sinclair J, Matheson NJ, Lehner PJ, Wills MR, Sithole N. Evidence of previous SARS-CoV-2 infection in seronegative patients with long COVID. EBioMedicine. 2022 Jul;81:104129. doi: 10.1016/j.ebiom.2022.104129. Epub 2022 Jun 27. PMID: 35772216; PMCID: PMC9235296. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235296/ (Full text)

Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation?

Abstract:

As inflammation in the brain contributes to several neurological and psychiatric diseases, the cause of neuroinflammation is being widely studied. The causes of neuroinflammation can be roughly divided into the following domains: viral infection, autoimmune disease, inflammation from peripheral organs, mental stress, metabolic disorders, and lifestyle. In particular, the effects of neuroinflammation caused by inflammation of peripheral organs have yet unclear mechanisms.

Many diseases, such as gastrointestinal inflammation, chronic obstructive pulmonary disease, rheumatoid arthritis, dermatitis, chronic fatigue syndrome, or myalgic encephalomyelitis (CFS/ME), trigger neuroinflammation through several pathways. The mechanisms of action for peripheral inflammation-induced neuroinflammation include disruption of the blood-brain barrier, activation of glial cells associated with systemic immune activation, and effects on autonomic nerves via the organ-brain axis. In this review, we consider previous studies on the relationship between systemic inflammation and neuroinflammation, focusing on the brain regions susceptible to inflammation.

Source: Sun Y, Koyama Y, Shimada S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front Aging Neurosci. 2022 Jun 16;14:903455. doi: 10.3389/fnagi.2022.903455. PMID: 35783147; PMCID: PMC9244793. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244793/ (Full text)

Cytokine Hub Classification of PASC, ME-CFS and other PASC-like Conditions

Abstract:

Background: Post-acute sequelae of COVID-19 (PASC) is a growing healthcare and economic concern affecting as many as 10%-30% of those infected with COVID-19. Though the symptoms have been well-documented, they significantly overlap with other common chronic inflammatory conditions which could confound treatment and therapeutic trials.

Methods: A total of 236 patients including 64 with post-acute sequelae of COVID-19 (PASC), 50 with myalgic encephalomyelitis-chronic fatigue syndrome (ME-CFS), 29 with post-treatment Lyme disease (PTLD), and 42 post-vaccine individuals with PASC-like symptoms (POVIP) were enrolled in the study. We performed a 14-plex cytokine/chemokine panel previously described to generate raw data that was normalized and run in a decision tree model using a Classification and Regression Tree (CART) algorithm. The algorithm was used to classify these conditions in distinct groups despite their similar symptoms.

Results: PASC, ME-CSF, POVIP, and Acute COVID-19 disease categories were able to be classified by our cytokine hub based CART algorithm with an average F1 score of 0.61 and high specificity (94%).

Conclusions: Proper classification of these inflammatory conditions with very similar symptoms is critical for proper diagnosis and treatment.

Source: Bruce K. Patterson, Jose Guevara-Coto, Edgar B. Francisco et al. Cytokine Hub Classification of PASC, ME-CFS and other PASC-like Conditions, 27 April 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1598634/v1]  https://www.researchsquare.com/article/rs-1598634/v1 (Full text)

Pre-illness data reveals differences in multiple metabolites and metabolic pathways in those who do and do not recover from infectious mononucleosis

Abstract:

Metabolic pathways related to energy production, amino acids, nucleotides, nitrogen, lipids, and neurotransmitters in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may contribute to the pathophysiology of ME/CFS. 4501 Northwestern University college students were enrolled in a prospective, longitudinal study.

We collected data before illness, during infectious mononucleosis (IM), and at a 6 month follow-up for those who recovered (N = 18) versus those who went on to develop ME/CFS 6 months later (N = 18). Examining pre-illness blood samples, we found significant detectable metabolite differences between participants fated to develop severe ME/CFS following IM versus recovered controls. We identified glutathione metabolism, nucleotide metabolism, and the TCA cycle (among others) as potentially dysregulated pathways.

The pathways that differed between cases and controls are essential for proliferating cells, particularly during a pro-inflammatory immune response. Performing a series of binary logistic regressions using a leave-one-out cross-validation (LOOCV), our models correctly classified the severe ME/CFS group and recovered controls with an accuracy of 97.2%, sensitivity of 94.4%, and specificity of 100.0%. These changes are consistent with the elevations in pro-inflammatory cytokines that we have reported for patients fated to develop severe ME/CFS 6 months after IM.

Source: Jason LA, Conroy KE, Furst J, Vasan K, Katz BZ. Pre-illness data reveals differences in multiple metabolites and metabolic pathways in those who do and do not recover from infectious mononucleosis. Mol Omics. 2022 May 31. doi: 10.1039/d2mo00124a. Epub ahead of print. PMID: 35640165. https://pubmed.ncbi.nlm.nih.gov/35640165/

Cytokine network analysis in a community-based pediatric sample of patients with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Objectives: Studies have demonstrated immune dysfunction in adolescents with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS); however, evidence is varied. The current study used network analysis to examine relationships between cytokines among a sample of pediatric participants with ME/CFS.

Methods: 10,119 youth aged 5-17 in the Chicagoland area were screened for ME/CFS; 111 subjects and controls were brought in for a physician examination and completed a blood draw. Youth were classified as controls (Cs, N = 43), ME/CFS (N = 23) or severe (S-ME/CFS, N = 45). Patterns of plasma cytokine networks were analyzed.

Results: All participant groups displayed a primary network of interconnected cytokines. In the ME/CFS group, inflammatory cytokines IL-12p70, IL-17A, and IFN-γ were connected and included in the primary membership, suggesting activation of inflammatory mechanisms. The S-ME/CFS group demonstrated a strong relationship between IL-17A and IL-23, a connection associated with chronic inflammation. The relationships of IL-6 and IL-8 in ME/CFS and S-ME/CFS participants also differed from Cs. Together, these results indicate pro-inflammatory responses in our illness populations.

Discussion: Our data imply biological differences between our three participant groups, with ME/CFS and S-ME/CFS participants demonstrating an inflammatory profile. Examining co-expression of cytokines may aid in the identification of a biomarker for pediatric ME/CFS.

Source: Jason LA, Gaglio CL, Furst J, Islam M, Sorenson M, Conroy KE, Katz BZ. Cytokine network analysis in a community-based pediatric sample of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Chronic Illn. 2022 May 16:17423953221101606. doi: 10.1177/17423953221101606. Epub ahead of print. PMID: 35570777.  https://pubmed.ncbi.nlm.nih.gov/35570777/

EBV/HHV-6A dUTPases contribute to Myalgic Encephalomyelitis/Chronic-Fatigue-Syndrome pathophysiology by enhancing TFH cell differentiation and extrafollicular activities

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating multisystem illness of unknown etiology for which there is no cure and no diagnostic tests available. Despite increasing evidence implicating EBV and human herpesvirus-6A (HHV-6A) as potential causative infectious agents in a subset of ME/CFS patients, there are few mechanistic studies to address a causal relationship.

In this study we examined a large ME/CFS cohort (n=351) and 77 controls and demonstrate a significant increase in activin A and IL-21serum levels, which correlated with seropositivity for antibodies to the EBV and HHV-6 protein deoxyuridine-triphosphate nucleotidohydrolase (dUTPase), but not CXCL13. These cytokines are critical for T follicular helper (TFH) cell differentiation, generation of high-affinity antibodies and long-lived plasma cells. Notably, ME/CFS serum was sufficient to drive TFH cell differentiation via an activin A-dependent mechanism.

The lack of simultaneous CXCL13 increase with IL-21 indicates impaired TFH-function in ME/CFS. In vitro studies revealed that virus-dUTPases strongly induced activin A secretion while in vivo, EBV-dUTPase induced the formation of splenic marginal zone B and invariant NKTFH cells. Altogether, our data indicate abnormal germinal center (GC) activity in ME/CFS subjects and highlight a mechanism by which EBV and HHV6-dUTPases may alter GC and extrafollicular Ab responses.

Source: Cox BS, Alharshawi K, Mena-Palomo I, Lafuse WP, Ariza ME. EBV/HHV-6A dUTPases contribute to Myalgic Encephalomyelitis/Chronic-Fatigue-Syndrome pathophysiology by enhancing TFH cell differentiation and extrafollicular activities. JCI Insight. 2022 Apr 28:e158193. doi: 10.1172/jci.insight.158193. Epub ahead of print. PMID: 35482424. https://pubmed.ncbi.nlm.nih.gov/35482424/

Predictors for Developing Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome following Infectious Mononucleosis

Background: About 10% of individuals who contract infectious mononucleosis (IM) have symptoms 6 months later that meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).  Our study for the first time examined whether it is possible to predict who will develop ME/CFS following IM.

Methods: We have reported on a prospectively recruited cohort of 4,501 college students, of which 238 (5.3%) developed IM.  Those who developed IM were followed-up at six months to determine whether they recovered or met criteria for ME/CFS. The present study focuses on 48 students who after six months had a diagnosis of ME/CFS, and a matched control group of 58 students who had no further symptoms after their IM. All of these 106 students  had data at baseline (at least 6 weeks prior to the development of IM), when experiencing IM, and 6 months following IM. Of those who did not recover from IM, there were two groups: 30 were classified as ME/CFS and 18 were classified as severe ME/CFS. We measured the results of 7 questionnaires, physical examination findings, the severity of mononucleosis and cytokine analyses at baseline (pre-illness) and at the time of IM.  We examined predictors (e.g., pre-illness variables as well as variables at onset of IM) of  those who developed ME/CFS and severe ME/CFS following IM.

Results: From analyses using receiver operating characteristic statistics, the students who had had severe gastrointestinal symptoms of stomach pain, bloating, and an irritable bowel at baseline  and who also had abnormally low levels of the immune markers IL-13 and/or IL-5 at baseline, as well as severe gastrointestinal symptoms when then contracted IM,  were found to have a nearly 80% chance of having severe ME/CFS persisting six months following IM.

Conclusions: Our findings are consistent with emerging literature that gastrointestinal distress and autonomic symptoms, along with several immune markers, may be implicated in the development of severe ME/CFS.

Source: Jason, Leonard & Cotler, Joseph & Islam, Mohammed & Furst, Jacob & Katz, Ben. (2022). Predictors for Developing Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome following Infectious Mononucleosis. Journal of Rehabilitation Therapy. 4. 1-5. 10.29245/2767-5122/2021/1.1129. https://www.rehabiljournal.com/articles/predictors-for-developing-severe-myalgic-encephalomyelitischronic-fatigue-syndrome-following-infectious-mononucleosis.html  (Full text)

Associations Between Psychological and Immunological Variables in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Systematic Review

Abstract:

Background: Little emphasis has been given to the fact that various psychological processes and behaviors in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) have neural correlates that affect-and are affected by-the immune system. The aim of this paper is to provide a systematic review of the literature on cross-sectional and longitudinal associations between psychological and immunological variables/changes in CFS/ME.

Methods: The systematic literature search was conducted on Dec 10, 2020 using PubMed. Original research studies investigating associations between a predefined set of psychological and immunological variables in CFS/ME were included. Specifically, the review was focused on studies examining the following psychological variables: executive function, emotion regulation, interpersonal function, sleep, mental health, anxiety, depression, and/or other psychiatric symptoms. In terms of immunological variables, studies investigating interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor (TNF), CD4+, and/or CD8+ were included. Besides original research papers, other potentially relevant papers (e.g., literature reviews) were carefully read and reference lists were checked in order to identify any additional relevant studies. Available data was summarized in text and tables.

Results: The literature search identified 897 potentially relevant papers. Ultimately, 14 studies (807 participants in total) were included in the review of which only two were longitudinal in nature. The review indicated that executive function is associated with IL-1 and IL-6, and interpersonal function is associated with IL-6 and TNF-α. Further, the available data suggested that emotion regulation is associated with IL-2 and sleep is associated with IL-1, IL-6, TNF-α, and IL-2. Interestingly, poorer emotion regulation, interpersonal function, and sleep have all been found to be associated with higher cytokine levels. Executive function has shown both positive and negative relationships with cytokines and among these psychological constructs, it is also the only one that has been found to be associated with CD4+ and CD8+ counts/percentages.

Conclusions: Correlations exist between psychological and immunological variables in CFS/ME. However, there are few consistent findings and there is almost a complete lack of longitudinal studies. This review points to a gap in existing CFS/ME research and hopefully, it will inspire to the generation of innovative, psychoneuroimmunological hypotheses within the CFS/ME research field.

Source: Raanes EFW, Stiles TC. Associations Between Psychological and Immunological Variables in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Systematic Review. Front Psychiatry. 2021 Nov 23;12:716320. doi: 10.3389/fpsyt.2021.716320. PMID: 34887782; PMCID: PMC8650213.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650213/  (Full text)