Analysis of post-COVID symptoms and predisposing factors for chronic post-COVID syndrome

Abstract:

Introduction: While there is sufficient information about acute COVID-19, which can cause a multisystemic and fatal disease, post-COVID syndrome and risk factors for this condition remain poorly known. We aimed to identify postCOVID symptoms and risk factors for chronic post-COVID syndrome through this study.

Materials and methods: This prospective cross-sectional study was conducted on 254 out of 384 COVID-19 patients admitted to our COVID-19 polyclinic between February and April 2021. The patients were questioned with a list of 37 symptoms at the fifth and twelfth weeks after disease onset via phone review, and their acute post-COVID (APC) and chronic post-COVID (CPC) symptoms were recorded. Data on risk factors were collected from the hospital’s medical records system. Associations between symptom count in the CPC phase and age, sex, hospitalization, RT-PCR result, specific radiological findings, comorbidities, and long-term medications were evaluated.

Result: Two hundred twenty-one patients had APC symptoms, and 138 patients had CPC symptoms. While the most common symptom was fatigue at week five, it was hair loss at week 12. Symptoms were observed significantly less in the CPC phase than in the APC phase (Z= -12.301, p= 0.00). Female sex and the presence of specific radiological findings were significantly associated with the occurrence of CPC symptoms (p= 0.03, p= 0.00, respectively). Long-term use of angiotensin-2 receptor blockers (ARBs) was correlated with a low symptom count in the CPC phase (p= 0.00).

Conclusions: Female sex and the presence of specific radiological findings were risk factors for developing CPC. Long-term use of ARBs was associated with a low chronic post-COVID symptom burden. A substantial cluster of multisystemic symptoms was observed in both phases, and this condition highlights the requirement for customized outpatient management that includes long-term follow-up and treatment of COVID-19 patients. Identifying the high-risk patients that will develop persistent symptoms can guide this management.

Source: Abalı H, Demir D, Gül Ş, Şimşek Veske N, Tural Onur S. Analysis of post-COVID symptoms and predisposing factors for chronic post-COVID syndrome. Tuberk Toraks. 2023 Dec;71(4):378-389. English. doi: 10.5578/tt.20239606. PMID: 38152008. https://pubmed.ncbi.nlm.nih.gov/38152008/ (Full text available as PDF file)

Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach

Abstract:

The dermatological manifestations of Long Covid (LC) have languished in the shadows of chronic fatigue and brain fog. Yet they are all linked by gut dysbiosis and the cytokine triad of TNF-α, IL-1β, and IL-6. The gut microbiome common not only to LC, psoriasis, AA, and vitiligo but also to neurodegenerative disease has been recently described. This gut microbiome induces an altered tryptophan metabolism linked to autoimmune disease. SARS CoV2 invades enterochromaffin cells rich in ACE2 receptors and curtails absorption of the essential amino acid tryptophan and subsequent synthesis of serotonin and melatonin.

This review suggests that an etiologic prebiotic (d-mannose)/probiotic (lactobacilli, bifidobacteria)/postbiotic (butyrate) approach to autoimmune skin disease that improves intestinal barrier integrity and that suppresses the triad of TNF-α, IL-6, and IL-1β may enhance or even eliminate the traditional immunotherapy of targeted monoclonal antibodies, Janus kinase inhibitors, and steroids. Health benefits of this approach extend well beyond suppression of autoimmune skin disease.

Source: Chambers, P.W.; Chambers, S.E. Long Covid, the Gut, and Autoimmune Skin Diseases: A Novel Therapeutic Approach. Preprints 2023, 2023121881. https://doi.org/10.20944/preprints202312.1881.v2 https://www.preprints.org/manuscript/202312.1881/v2 (Full text available as PDF file)

Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review

Abstract:

Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS.

Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways.

In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.

Source: Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci. 2024 Jan 3. doi: 10.1007/s00406-023-01734-3. Epub ahead of print. PMID: 38172332. https://link.springer.com/article/10.1007/s00406-023-01734-3 (Full text)

Muscle abnormalities worsen after post-exertional malaise in long COVID

Abstract:

A subgroup of patients infected with SARS-CoV-2 remain symptomatic over three months after infection. A distinctive symptom of patients with long COVID is post-exertional malaise, which is associated with a worsening of fatigue- and pain-related symptoms after acute mental or physical exercise, but its underlying pathophysiology is unclear.

With this longitudinal case-control study (NCT05225688), we provide new insights into the pathophysiology of post-exertional malaise in patients with long COVID. We show that skeletal muscle structure is associated with a lower exercise capacity in patients, and local and systemic metabolic disturbances, severe exercise-induced myopathy and tissue infiltration of amyloid-containing deposits in skeletal muscles of patients with long COVID worsen after induction of post-exertional malaise. This study highlights novel pathways that help to understand the pathophysiology of post-exertional malaise in patients suffering from long COVID and other post-infectious diseases.

Source: Appelman, B., Charlton, B.T., Goulding, R.P. et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun 15, 17 (2024). https://doi.org/10.1038/s41467-023-44432-3 https://www.nature.com/articles/s41467-023-44432-3 (Full text)

A Mechanistic Model for Long COVID Dynamics

Abstract:

Long COVID, a long-lasting disorder following an acute infection of COVID-19, represents a significant public health burden at present. In this paper, we propose a new mechanistic model based on differential equations to investigate the population dynamics of long COVID. By connecting long COVID with acute infection at the population level, our modeling framework emphasizes the interplay between COVID-19 transmission, vaccination, and long COVID dynamics. We conducted a detailed mathematical analysis of the model. We also validated the model using numerical simulation with real data from the US state of Tennessee and the UK.

Source: Derrick J, Patterson B, Bai J, Wang J. A Mechanistic Model for Long COVID Dynamics. Mathematics (Basel). 2023 Nov;11(21):4541. doi: 10.3390/math11214541. Epub 2023 Nov 3. PMID: 38111916; PMCID: PMC10727852. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10727852/ (Full text)

Profound Symptom Alleviation in Long-Covid Patients After PAMP-Immunotherapy: Three Case Reports

Abstract:

Background: Long-Covid patients suffer from a range of symptoms with a largely varying degree of severity, including chronic fatigue syndrome (CFS), myalgic encephalomyelitis (ME), post-exertional malaise (PEM), postural orthostatic tachycardia syndrome (POTS), loss of smell and/or taste, cough, shortness of breath, headache, muscle ache, sleep disturbance, cognitive dysfunction, and depression.

Treatment: PAMP-immunotherapy was developed by one of us (UH), inspired by the old fever therapy a century ago, to treat cancer patients. Unintentionally, in three cases of Long-Covid, quick and profound symptom alleviation could be observed after only a few PAMP treatments.

Conclusion: PAMP-immunotherapy might be a treatment option for Long-Covid patients which is surprisingly brief, cheap, and effective.

Source: Raphaela Gaudek, Holger Porath, Uwe Hobohm. (2023). [Case Report] Profound Symptom Alleviation in Long-Covid Patients After PAMP-Immunotherapy: Three Case Reports. Qeios. doi:10.32388/69I32L. https://www.qeios.com/read/69I32L (Full text)

Data-driven prognosis of long COVID in patients using machine learning

Abstract:

Long-COVID is a health condition in which individuals experience persisting, returning or new symptoms longer than 4 weeks after they have recovered from COVID-19 and this condition can even last for months. It can cause multi-organ failure and in some cases, it can even lead to death. The effects and symptoms of Long COVID can vary from person to person. Even though it’s rising globally, there is a limited understanding about its prediction, risk factors and whether its prognosis can be predicted in the initial first week of acute COVID-19. Artificial Intelligence (AI) and Machine Learning (ML) have aided the medical industry in a variety of ways including the diagnosis, prediction, and prognosis of many diseases.

This paper introduces a novel method to determine Long COVID in the early or first week of acute COVID-19 by considering the basic demographics, and symptoms during COVID-19, along with the clinical lab results of the patients hospitalized. In comparison with different ML models such as Logistic Regression, Support Vector Machine (SVM), XGBoost and Artificial Neural Network (ANN) to predict and classify the patients as Long COVID or Short COVID during the first week of COVID-19, ANN has outperformed the other models with an accuracy of 81% when considering the symptoms of COVID-19 and a 79% for the clinical test data. The predictive factors and the significant clinical tests for the Long COVID are also determined by using different methods like Chi-square Test and Pearson Correlation.

Source: S. S. ParvathyNagesh SubbannaSethuraman RaoRahul Krishnan PathinarupothiT. S. DipuMerlin MoniChithira V. Nair; Data-driven prognosis of long COVID in patients using machine learning. AIP Conf. Proc. 15 December 2023; 2901 (1): 060014. https://doi.org/10.1063/5.0178561 https://pubs.aip.org/aip/acp/article/2901/1/060014/2930006 (Full text available as PDF file)

Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components

Abstract:

Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce.

These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues.

Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection.

Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.

Source: El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem. 2023 Dec 14. doi: 10.1002/jcb.30514. Epub ahead of print. PMID: 38098317. https://pubmed.ncbi.nlm.nih.gov/38098317/

Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems

Abstract:

The coronavirus disease 2019 (COVID-19), instigated by the zoonotic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly transformed from an outbreak in Wuhan, China, into a widespread global pandemic. A significant post-infection condition, known as ‘long- COVID-19′ (or simply ‘long- COVID’), emerges in a substantial subset of patients, manifesting with a constellation of over 200 reported symptoms that span multiple organ systems. This condition, also known as ‘post-acute sequelae of SARS-CoV-2 infection’ (PASC), presents a perplexing clinical picture with far-reaching implications, often persisting long after the acute phase.
While initial research focused on the immediate pulmonary impact of the virus, the recognition of COVID-19 as a multiorgan disruptor has unveiled a gamut of protracted and severe health issues. This review summarizes the primary effects of long COVID on the respiratory, cardiovascular, and nervous systems. It also delves into the mechanisms underlying these impacts and underscores the critical need for a comprehensive understanding of long COVID’s pathogenesis.
Source: Sideratou C-M, Papaneophytou C. Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems. Infectious Disease Reports. 2023; 15(6):806-830. https://doi.org/10.3390/idr15060072 https://www.mdpi.com/2036-7449/15/6/72 (Full text)

Persistence of post-COVID symptoms in the general population two years after SARS-CoV-2 infection: A systematic review and meta-analysis

Abstract:

Objective: This meta-analysis investigated the prevalence of post-COVID symptoms two-years after SARS-CoV-2 infection.

Methods: Electronic literature searches on PubMed, MEDLINE, CINAHL, EMBASE, Web of Science databases, and on medRxiv/bioRxiv preprint servers were conducted up to October 1, 2023. Studies reporting data on post-COVID symptoms at two-years after infection were included. Methodological quality was assessed using the Newcastle-Ottawa Scale. Random-effects models were used for meta-analytical pooled prevalence of each symptom.

Results: From 742 studies identified, twelve met inclusion criteria. The sample included 7912 COVID-19 survivors (50.7% female; age: 59.5, SD: 16.3). Post-COVID symptoms were assessed at a follow-up of 722.9 (SD: 51.5) days after. The overall methodological quality of studies was moderate (mean: 6/10, SD: 1.2 points). The most prevalent post-COVID symptoms two-years after SARS-CoV-2 infection were fatigue (28.0%, 95%CI 12.0-47.0), cognitive impairments (27.6%, 95%CI 12.6-45.8), and pain (8.4%, 95%CI 4.9-12.8). Psychological disturbances such as anxiety (13.4%, 95%CI 6.3-22.5) and depressive (18.0%, 95%CI 4.8-36.7) levels as well as sleep problems (20.9%, 95%CI 5.25-43.25) were also prevalent. Pooled data showed high heterogeneity (I2 ≥ 75%).

Conclusion: This meta-analysis shows the presence of post-COVID symptoms in 30% of patients two-years after COVID-19. Fatigue, cognitive disorders, and pain were the most prevalent post-COVID symptoms. Psychological disturbances as well as sleep problems were still present two-years after COVID-19.

Source: Fernandez-de-Las-Peñas C, Notarte KI, Macasaet R, Velasco JV, Catahay JA, Ver AT, Chung W, Valera-Calero JA, Navarro-Santana M. Persistence of post-COVID symptoms in the general population two years after SARS-CoV-2 infection: A systematic review and meta-analysis. J Infect. 2023 Dec 13:S0163-4453(23)00590-X. doi: 10.1016/j.jinf.2023.12.004. Epub ahead of print. PMID: 38101521. https://www.journalofinfection.com/article/S0163-4453(23)00590-X/fulltext (Full text)