Cognitive impact and brain structural changes in long COVID patients: a cross-sectional MRI study two years post infection in a cohort from Argentina

Abstract:

Objective: Long COVID is a condition characterised by persistent symptoms after a SARS-CoV-2 infection, with neurological manifestations being particularly frequent. Existing research suggests that long COVID patients not only report cognitive symptoms but also exhibit measurable cognitive impairment. Neuroimaging studies have identified structural alterations in brain regions linked to cognitive functions. However, most of these studies have focused on patients within months of their initial infection. This study aims to explore the longer-term cognitive effects and brain structural changes in long COVID patients, approximately two years post-infection, in a cohort from San Martín, Buenos Aires, Argentina.

Methods: We conducted a cross-sectional study involving 137 participants: 109 with long COVID symptoms and 28 healthy controls. The participants underwent an initial clinical assessment, completed a structured questionnaire and standardised scales, underwent a cognitive assessment, and had a brain MRI scan. Structural MRI images were processed via FreeSurfer and FSL to obtain volumetric measures for subcortical and cortical regions, along with regional cortical thickness. Differences between groups for these variables were analysed using ANCOVA, with permutation tests applied to correct for multiple comparisons.

Results: Long COVID patients reported persistent cognitive symptoms such as memory problems and brain fog, with higher levels of fatigue and reduced quality of life compared to controls. Despite subjective cognitive complaints, cognitive tests did not reveal significant differences between groups, except for the TMT-A (p = 0.05). MRI analysis revealed decreased volume in the cerebellum (p = 0.03), lingual gyrus (p = 0.04), and inferior parietal regions (p = 0.03), and reduced cortical thickness in several areas, including the left and right postcentral gyri (p = 0.02, p = 0.03) and precuneus (p = 0.01, p = 0.02).

Conclusions: This study highlights the enduring impact of long COVID on quality of life and physical activity, with specific brain structural changes identified two years post-infection. Although cognitive tests did not show clear impairment, the observed brain atrophy and significant reduction in quality of life emphasize the need for comprehensive interventions and further longitudinal studies to understand the long-term effects of long COVID on cognition and brain health.

Source: Cataldo SA, Micciulli A, Margulis L, Cibeyra M, Defeo S, Horovitz SG, Martino A, Melano R, Mena M, Parisi F, Santoro D, Sarmiento F, Belzunce MA. Cognitive impact and brain structural changes in long COVID patients: a cross-sectional MRI study two years post infection in a cohort from Argentina. BMC Neurol. 2024 Nov 18;24(1):450. doi: 10.1186/s12883-024-03959-8. PMID: 39558250; PMCID: PMC11572126. https://pmc.ncbi.nlm.nih.gov/articles/PMC11572126/ (Full text)

Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects

Abstract:

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them.

To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level – OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01).

We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus.

In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients’ cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency.

This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

Source: Serrano Del Pueblo VM, Serrano-Heras G, Romero Sánchez CM, Piqueras Landete P, Rojas-Bartolome L, Feria I, Morris RGM, Strange B, Mansilla F, Zhang L, Castro-Robles B, Arias-Salazar L, López-López S, Payá M, Segura T, Muñoz-López M. Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects. Brain. 2024 Apr 2:awae101. doi: 10.1093/brain/awae101. Epub ahead of print. PMID: 38562097. https://pubmed.ncbi.nlm.nih.gov/38562097/

Reduced Cortical Thickness Correlates of Cognitive Dysfunction in Post-COVID-19 Condition: Insights from a Long-Term Follow-up

Abstract:

Background and purpose: There is a paucity of data on long-term neuroimaging findings from individuals who have developed the post-coronavirus 2019 (COVID-19) condition. Only 2 studies have investigated the correlations between cognitive assessment results and structural MR imaging in this population. This study aimed to elucidate the long-term cognitive outcomes of participants with the post-COVID-19 condition and to correlate these cognitive findings with structural MR imaging data in the post-COVID-19 condition.

Materials and methods: A cohort of 53 participants with the post-COVID-19 condition underwent 3T brain MR imaging with T1 and FLAIR sequences obtained a median of 1.8 years after Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. A comprehensive neuropsychological battery was used to assess several cognitive domains in the same individuals. Correlations between cognitive domains and whole-brain voxel-based morphometry were performed. Different ROIs from FreeSurfer were used to perform the same correlations with other neuroimaging features.

Results: According to the Frascati criteria, more than one-half of the participants had deficits in the attentional (55%, n = 29) and executive (59%, n = 31) domains, while 40% (n = 21) had impairment in the memory domain. Only 1 participant (1.89%) showed problems in the visuospatial and visuoconstructive domains. We observed that reduced cortical thickness in the left parahippocampal region (t(48) = 2.28, = .03) and the right caudal-middle-frontal region (t(48) = 2.20, = .03) was positively correlated with the memory domain.

Conclusions: Our findings suggest that cognitive impairment in individuals with the post-COVID-19 condition is associated with long-term alterations in the structure of the brain. These macrostructural changes may provide insight into the nature of cognitive symptoms.

Source: Dacosta-Aguayo R, Puig J, Lamonja-Vicente N, Carmona-Cervelló M, Biaani León-Gómez B, Monté-Rubio G, López-Linfante VM, Zamora-Putin V, Montero-Alia P, Chacon C, Bielsa J, Moreno-Gabriel E, Garcia-Sierra R, Pachón A, Costa A, Mataró M, Prado JG, Martinez-Cáceres E, Mateu L, Massanella M, Violán C, Torán-Monserrat P; Aliança ProHEpiC-19 Cognitiu (The APC Collaborative Group). Reduced Cortical Thickness Correlates of Cognitive Dysfunction in Post-COVID-19 Condition: Insights from a Long-Term Follow-up. AJNR Am J Neuroradiol. 2024 Apr 4. doi: 10.3174/ajnr.A8167. Epub ahead of print. PMID: 38575319. https://pubmed.ncbi.nlm.nih.gov/38575319/

Cortical thickness alterations and systemic inflammation define long-COVID patients with cognitive impairment

Abstract:

As the heterogeneity of symptoms is increasingly recognized among long-COVID patients, it appears highly relevant to study potential pathophysiological differences along the different subtypes. Preliminary evidence suggests distinct alterations in brain structure and systemic inflammatory patterns in specific groups of long-COVID patients.

To this end, we analyzed differences in cortical thickness and peripheral immune signature between clinical subgroups based on 3T-MRI scans and signature inflammatory markers in n=120 participants comprising healthy never-infected controls, healthy COVID-19 survivors, and subgroups of long-COVID patients with and without cognitive impairment according to screening with Montreal Cognitive Assessment.

Whole-brain comparison of cortical thickness between the 4 groups was conducted by surface-based morphometry. We identified distinct cortical areas showing a progressive increase in cortical thickness across different groups, starting from healthy individuals who had never been infected with COVID-19, followed by healthy COVID-19 survivors, long-COVID patients without cognitive deficits (MoCA ≥ 26), and finally, long-COVID patients exhibiting significant cognitive deficits (MoCA < 26). These findings highlight the continuum of cortical thickness alterations associated with COVID-19, with more pronounced changes observed in individuals experiencing cognitive impairment (p<0.05, FWE-corrected).

Affected cortical regions covered prefrontal and temporal gyri, insula, posterior cingulate, parahippocampal gyrus, and parietal areas. Additionally, we discovered a distinct immunophenotype, with elevated levels of IL-10, IFNg, and sTREM2 in long-COVID patients, especially in the group suffering from cognitive impairment.

We demonstrate lingering cortical and immunological alterations in healthy and impaired subgroups of COVID-19 survivors. This implies a complex underlying pathomechanism in long-COVID and emphasizes the necessity to investigate the whole spectrum of post-COVID biology to determine targeted treatment strategies targeting specific sub-groups.

Source: Bianca BesteherTonia RocktaeschelAlejandra Patricia GarzaMarlene MachnikJohanna BallezDario Lucas HelbingKatrhin FinkePhilipp ReukenDaniel GuellmarChristian GaserMartin WalterNils OpelIldiko Rita Dunay. Cortical thickness alterations and systemic inflammation define long-COVID patients with cognitive impairment. (Full text available as PDF file)

Alteration of Cortical Volume and Thickness in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS) patients suffer from neurocognitive impairment. In this study, we investigated cortical volumetric and thickness changes in ME/CFS patients and healthy controls (HC). We estimated mean surface-based cortical volume and thickness from 18 ME/CFS patients who met International Consensus Criteria (ICC) and 26 HC using FreeSurfer. Vertex-wise analysis showed significant reductions in the caudal middle frontal gyrus (p = 0.0016) and precuneus (p = 0.013) thickness in ME/CFS patients compared with HC.

Region based analysis of sub-cortical volumes found that amygdala volume (p = 0.002) was significantly higher in ME/CFS patients compared with HC. We also performed interaction-with-group regressions with clinical measures to test for cortical volume and thickness correlations in ME/CFS with opposite slopes to HC (abnormal). ME/CFS cortical volume and thickness regressions with fatigue, heart-rate variability, heart rate, sleep disturbance score, respiratory rate, and cognitive performance were abnormal. Our study demonstrated different cortical volume and thickness in ME/CFS patients and showed abnormal cortical volume and thickness regressions with key symptoms of ME/CFS patients.

Source: Thapaliya Kiran, Marshall-Gradisnik Sonya, Staines Donald, Su Jiasheng, Barnden Leighton. Alteration of Cortical Volume and Thickness in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Frontiers in Neuroscience, Vol 16, 2022. DOI=10.3389/fnins.2022.848730 https://www.frontiersin.org/articles/10.3389/fnins.2022.848730/full   (Full text)