Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19

Abstract:

COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19.

These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease.

This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.

Source: Nair, S., Nova-Lamperti, E., Labarca, G. et al. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 21, 709 (2023). https://doi.org/10.1186/s12967-023-04552-2 https://link.springer.com/article/10.1186/s12967-023-04552-2 (Full text)

 

Investigating the potential role of circulatory extracellular vesicles in myalgic encephalomyelitis/ chronic fatigue syndrome

Abstract:

ME/CFS is a debilitating disease thought to affect millions of individuals. Still, the etiology of ME/CFS is unknown, and there are no standard treatments or established biomarkers. The current symptom-based diagnosis is extensive, and the use of different diagnostic criteria contributes to heterogeneity among patients and may problematize the comparison of findings. Thus, the discovery of a biomarker for ME/CFS is urgent and would benefit both patients and the ME/CFS research field.

Extracellular vesicles (EVs) are membrane limited vesicles secreted by all cells to the extracellular environment and can be collected through biofluids. EVs serve many functions, including transferring functional proteins, lipids, and nucleic acids between cells, thus mediating cell-to-cell communication. EV secretion and cargo may reflect disease state and EVs thus pose great potential as source of minimally invasive biomarkers.

The primary aim of this project was to study EVs in plasma from ME/CFS patients and assess the potential of EVs as source of biomarkers for the disease.

Using size exclusion chromatography, EVs were enriched from plasma from ME/CFS patients (n = 20) and healthy controls (n=20). Success of EV isolation was determined in representative patient- and control EV pools (n=5) using western blotting and transmission electron microscopy. Western blot experiments for detection of EV markers CD9, CD63 and TSG101, and albumin, were optimized and confirmed enrichment of EVs and presence of non-EV eluates in the isolated samples.

EV enrichment was further validated through observation of intact EVs on transmission electron micrographs, however few CD63-positive EVs were observed. Through analysis of nanoparticle tracking analysis data, the isolated EV population primarily consisted of small EVs (< 200 nm). Within this EV population, meanand mode EV size was similar between cohorts, but the EV concentration was significantly elevated in samples from patients compared to controls (p = 0.006). However, statistical tests may have been influenced by high variation within the ME/CFS cohort.

Early-stage analysis of tandem mass spectrometry data identified 663 EV associated proteins. The majority of detected proteins overlapped with registered EV proteins, but only few differences could be observed between patient- and control derived samples. However, differential expression was not analyzed.

A biomarker for ME/CFS could not be suggested at this stage of the study, however increased EV concentration suggests abnormality in EV secretion in patients which strengthens their potential as source of biomarkers and further motivates EV research in ME/CFS and related diseases.

Source: Elena Støvring Yran. Investigating the potential role of circulatory extracellular vesicles in myalgic encephalomyelitis/ chronic fatigue syndrome. Master Thesis [University of Oslo] https://www.duo.uio.no/bitstream/handle/10852/103812/1/Masterthesis_ElenaYran_May15th2023.pdf  (Full text)

Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/ chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious, debilitating disorder with a wide spectrum of symptoms, including pain, depression, and neurocognitive deterioration. Over 17 million people around the world have ME/CFS, predominantly women with peak onset at 30-50 years. Given the wide spectrum of symptoms and unclear etiology, specific biomarkers for diagnosis and stratification of ME/CFS are lacking. Here we show that actin network proteins in circulating extracellular vesicles (EVs) offer specific non-invasive biomarkers for ME/CFS.

We found that circulating EVs were significantly increased in ME/CFS patients correlating to C-reactive protein, as well as biological antioxidant potential. Area under the receiver operating characteristic curve for circulating EVs was 0.80, allowing correct diagnosis in 90-94% of ME/CFS cases. From two independent proteomic analyses using circulating EVs from ME/CFS, healthy controls, idiopathic chronic fatigue, and depression, proteins identified from ME/CFS patients are involved in focal adhesion, actin skeletal regulation, PI3K-Akt signaling pathway, and Epstein-Barr virus infection. In particular, talin-1, filamin-A, and 14-3-3 family proteins were the most abundant proteins, representing highly specific ME/CFS biomarkers.

Our results identified circulating EV number and EV-specific proteins as novel biomarkers for diagnosing ME/CFS, providing important information on the pathogenic mechanisms of ME/CFS.

Copyright © 2019. Published by Elsevier Inc.

Source: Eguchi A, Fukuda S, Kuratsune H, Nojima J, Nakatomi Y, Watanabe Y, Feldstein AE. Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/ chronic fatigue syndrome. Brain Behav Immun. 2019 Nov 20. pii: S0889-1591(19)30762-7. doi: 10.1016/j.bbi.2019.11.015. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31759091