Gulf War Illness: A Historical Review and Considerations of a Post-Viral Syndrome

Abstract:

Gulf War Illness (GWI) is a condition that affects 30-40% of nearly 700,000 Veterans who were deployed to Operations Desert Shield/Storm/Sabre (ODS/S/S) between August 1990 and June 1991 and is characterized by a constellation of symptoms, including fatigue, mood/cognition, chronic pain, gastrointestinal (most frequently referred to as “irritable bowel syndrome”), respiratory, and skin issues.

We review the development of various case definitions for GWI, as well as exposure theories. Despite heavy investment in research, both the pathophysiology and underlying cause of GWI remain areas of active inquiry. Similarities have previously been noted in symptomatology between GWI and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and more recently, long COVID (LC), a late effect of infection with the Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2).

These conditions are discussed with respect to the similarities of their symptomatology and pathophysiology. Long COVID is a post-viral syndrome, and ME/CFS is widely considered to be likely post-infectious as well. This comparison leads to the proposal of the hypothesis that GWI may also be post-viral. Given the similarity of GWI and LC, it is possible that Veterans with GWI had an antecedent infection with a virus related to SARS-CoV-2, potentially the Middle East Respiratory Syndrome Coronavirus (MERS) or an ancestor of this virus. The MERS antibodies have been found in dromedary camels in Saudi Arabia since 1983 to the present, including the time of ODS/S/S. There is abundant evidence to support further investigation into this topic.

Source: Bast E, Jester DJ, Palacio A, Krengel M, Reinhard M, Ashford JW. Gulf War Illness: A Historical Review and Considerations of a Post-Viral Syndrome. Mil Med. 2025 Mar 21:usaf092. doi: 10.1093/milmed/usaf092. Epub ahead of print. PMID: 40117126. https://pubmed.ncbi.nlm.nih.gov/40117126/

Novel characterization of endogenous transient receptor potential melastatin 3 ion channels from Gulf War Illness participants

Abstract:

Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that still affect up to one-third of veterans who engaged in combat in the Gulf War three decades ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines, and medications. As there is a significant overlap in symptoms between GWI and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel.

NK cells from 6 healthy controls (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typical TRPM3 function after pharmacomodulation.

In contrast, this pilot investigation demonstrates a dysfunctional TRPM3 in NK cells from GWI participants through application of a TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in TRPM3 function from GWI than results measured in HC. This study provides an unprecedented research field to investigate the involvement of TRP ion channels in the pathomechanism and potential medical interventions to improve GWI quality of life.

Source: Marshall-Gradisnik S, Martini Sasso E, Eaton-Fitch N, Smith P, Baraniuk JN, Muraki K. Novel characterization of endogenous transient receptor potential melastatin 3 ion channels from Gulf War Illness participants. PLoS One. 2024 Jun 25;19(6):e0305704. doi: 10.1371/journal.pone.0305704. PMID: 38917121; PMCID: PMC11198784. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11198784/ (Full text)

Dry eye symptoms and signs in United States Gulf War era veterans with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: To examine ocular symptoms and signs of veterans with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) diagnosis, ME/CFS symptoms, and controls.

Methods: This was a prospective, cross-sectional study of 124 South Florida veterans in active duty during the Gulf War era. Participants were recruited at an ophthalmology clinic at the Miami Veterans Affairs Hospital and evaluated for a diagnosis of ME/CFS, or symptoms of ME/CFS (intermediate fatigue, IF) using the Canadian Consensus criteria. Ocular symptoms were assessed via standardised questionnaires and signs via comprehensive slit lamp examination. Inflammatory blood markers were analysed and compared across groups.

Results: Mean age was 55.1 ± 4.7 years, 88.7% identified as male, 58.1% as White, and 39.5% as Hispanic. Ocular symptoms were more severe in the ME/CFS (n = 32) and IF (n = 48) groups compared to controls (n = 44) across dry eye (DE; Ocular Surface Disease Index [OSDI]: 48.9 ± 22.3 vs. 38.8 ± 23.3 vs. 19.1 ± 17.8, p < 0.001; 5 item Dry Eye Questionnaire [DEQ-5]: 10.8 ± 3.9 vs. 10.0 ± 4.6 vs. 6.6 ± 4.2, p < 0.001) and pain-specific questionnaires (Numerical Rating Scale 1-10 [NRS] right now: 2.4 ± 2.8 vs. 2.4 ± 2.9 vs 0.9 ± 1.5; p = 0.007; Neuropathic Pain Symptom Inventory modified for the Eye [NPSI-E]: 23.0 ± 18.6 vs. 19.8 ± 19.1 vs. 6.5 ± 9.0, p < 0.001). Ocular surface parameters and blood markers of inflammation were generally similar across groups.

Conclusion: Individuals with ME/CFS report increased ocular pain but similar DE signs, suggesting that mechanisms beyond the ocular surface contribute to symptoms.

Source: Victor Sanchez BS, Colin K. Kim BS, Elyana V. T. Locatelli BS, Adam K. Cohen, Kimberly Cabrera MS, Kristina Aenlle PhD, Nancy G. Klimas MD, Robert O’Brien PhD, Anat Galor MD, MSPH. Dry eye symptoms and signs in United States Gulf War era veterans with myalgic encephalomyelitis/chronic fatigue syndrome. First published: 12 November 2023 https://doi.org/10.1111/ceo.14313 https://onlinelibrary.wiley.com/doi/10.1111/ceo.14313 (Full text)

Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM)

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), Gulf War Illness (GWI) and control subjects underwent fMRI during difficult cognitive tests performed before and after submaximal exercise provocation (Washington 2020). Exercise caused increased activation in ME/CFS but decreased activation for GWI in the dorsal midbrain, left Rolandic operculum and right middle insula. Midbrain and isthmus nuclei participate in threat assessment, attention, cognition, mood, pain, sleep, and autonomic dysfunction.

Methods: Activated midbrain nuclei were inferred by a re-analysis of data from 31 control, 36 ME/CFS and 78 GWI subjects using a seed region approach and the Harvard Ascending Arousal Network.

Results: Before exercise, control and GWI subjects showed greater activation during cognition than ME/CFS in the left pedunculotegmental nucleus. Post exercise, ME/CFS subjects showed greater activation than GWI ones for midline periaqueductal gray, dorsal and median raphe, and right midbrain reticular formation, parabrachial complex and locus coeruleus. The change between days (delta) was positive for ME/CFS but negative for GWI, indicating reciprocal patterns of activation. The controls had no changes.

Conclusions: Exercise caused the opposite effects with increased activation in ME/CFS but decreased activation in GWI, indicating different pathophysiological responses to exertion and mechanisms of disease. Midbrain and isthmus nuclei contribute to postexertional malaise in ME/CFS and GWI.

Source: Baraniuk JN, Amar A, Pepermitwala H, Washington SD. Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM). Brain Sci. 2022 Jan 5;12(1):78. doi: 10.3390/brainsci12010078. PMID: 35053821. https://pubmed.ncbi.nlm.nih.gov/35053821/

Subcortical brain segment volumes in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Aims: There is controversy about brain volumes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Subcortical regions were assessed because of significant differences in blood oxygenation level dependent signals in the midbrain between these diseases.

Materials and method: Magnetization-prepared rapid acquisition with gradient echo (MPRAGE) images from 3 Tesla structural magnetic resonance imaging scans from sedentary control (n = 34), CFS (n = 38) and GWI (n = 90) subjects were segmented in FreeSurfer. Segmented subcortical volumes were regressed against intracranial volume and age, then iteratively analyzed by multivariate general linear modeling with disease status, gender and demographics as independent co-variates.

Key findings: The optimal model for all subjects used disease status and gender as fixed factors with independent variables eliminated after iteration. Volumes of anterior and midanterior corpus callosum were significantly larger in GWI than CFS. Gender was a significant variable for many segment volumes, and so female and male subjects were analyzed separately. CFS females had smaller left putamen, right caudate and left cerebellum white matter than control women. CFS males had larger left hippocampus than GWI males. Orthostatic status and posttraumatic distress syndrome were not significant covariates.

Significance: CFS and GWI were appropriate “illness controls” for each other. The different patterns of adjusted segment volumes suggested that sexual dimorphisms contributed to pathological changes. Previous volumetric studies may need to be reevaluated to account for gender differences. The findings are framed by comparison to the spectrum of magnetic resonance imaging outcomes in the literature.

Source: Addiego FM, Zajur K, Knack S, Jamieson J, Rayhan RU, Baraniuk JN. Subcortical brain segment volumes in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Life Sci. 2021 Jun 29:119749. doi: 10.1016/j.lfs.2021.119749. Epub ahead of print. PMID: 34214570. https://pubmed.ncbi.nlm.nih.gov/34214570/

Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls

Abstract:

Veterans from the 1991 Gulf War (GW) have suffered from Gulf War illness (GWI) for nearly 30 years. This illness encompasses multiple body systems, including the central nervous system (CNS). Diagnosis and treatment of GWI is difficult because there has not been an objective diagnostic biomarker. Recently, we reported on a newly developed blood biomarker that discriminates GWI from GW healthy controls, and symptomatic controls with irritable bowel syndrome (IBS) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The present study was designed to compare levels of these biomarkers between men and women with GWI, as well as sex-specific effects in comparison to healthy GW veterans and symptomatic controls (IBS, ME/CFS).

The results showed that men and women with GWI differ in 2 of 10 plasma autoantibodies, with men showing significantly elevated levels. Men and women with GWI showed significantly different levels of autoantibodies in 8 of 10 biomarkers to neuronal and glial proteins in plasma relative to controls. In summary, the present study addressed the utility of the use of plasma autoantibodies for CNS proteins to distinguish among both men and women veterans with GWI and other healthy and symptomatic control groups.

Source: Abou-Donia MB, Krengel MH, Lapadula ES, Zundel CG, LeClair J, Massaro J, Quinn E, Conboy LA, Kokkotou E, Nguyen DD, Abreu M, Klimas NG, Sullivan K. Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls. Brain Sci. 2021 Jan 23;11(2):148. doi: 10.3390/brainsci11020148. PMID: 33498629. https://pubmed.ncbi.nlm.nih.gov/33498629/

Exercise modifies glutamate and other metabolic biomarkers in cerebrospinal fluid from Gulf War Illness and Myalgic encephalomyelitis / Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) share many symptoms of fatigue, pain, and cognitive dysfunction that are not relieved by rest. Patterns of serum metabolites in ME/CFS and GWI are different from control groups and suggest potential dysfunction of energy and lipid metabolism. The metabolomics of cerebrospinal fluid was contrasted between ME/CFS, GWI and sedentary controls in 2 sets of subjects who had lumbar punctures after either (a) rest or (b) submaximal exercise stress tests. Postexercise GWI and control subjects were subdivided according to acquired transient postexertional postural tachycardia. Banked cerebrospinal fluid specimens were assayed using Biocrates AbsoluteIDQ® p180 kits for quantitative targeted metabolomics studies of amino acids, amines, acylcarnitines, sphingolipids, lysophospholipids, alkyl and ether phosphocholines.

Glutamate was significantly higher in the subgroup of postexercise GWI subjects who did not develop postural tachycardia after exercise compared to nonexercise and other postexercise groups. The only difference between nonexercise groups was higher lysoPC a C28:0 in GWI than ME/CFS suggesting this biochemical or phospholipase activities may have potential as a biomarker to distinguish between the 2 diseases. Exercise effects were suggested by elevation of short chain acylcarnitine C5-OH (C3-DC-M) in postexercise controls compared to nonexercise ME/CFS. Limitations include small subgroup sample sizes and absence of postexercise ME/CFS specimens. Mechanisms of glutamate neuroexcitotoxicity may contribute to neuropathology and “neuroinflammation” in the GWI subset who did not develop postural tachycardia after exercise. Dysfunctional lipid metabolism may distinguish the predominantly female ME/CFS group from predominantly male GWI subjects.

Source: Baraniuk JN, Kern G, Narayan V, Cheema A. Exercise modifies glutamate and other metabolic biomarkers in cerebrospinal fluid from Gulf War Illness and Myalgic encephalomyelitis / Chronic Fatigue Syndrome. PLoS One. 2021 Jan 13;16(1):e0244116. doi: 10.1371/journal.pone.0244116. PMID: 33440400. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244116 (Full text)

Using Plasma Autoantibodies of Central Nervous System Proteins to Distinguish Veterans with Gulf War Illness from Healthy and Symptomatic Controls

Abstract:

For the past 30 years, there has been a lack of objective tools for diagnosing Gulf War Illness (GWI), which is largely characterized by central nervous system (CNS) symptoms emerging from 1991 Gulf War (GW) veterans. In a recent preliminary study, we reported the presence of autoantibodies against CNS proteins in the blood of veterans with GWI, suggesting a potential objective biomarker for the disorder.

Now, we report the results of a larger, confirmatory study of these objective biomarkers in 171 veterans with GWI compared to 60 healthy GW veteran controls and 85 symptomatic civilian controls (n = 50 myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and n = 35 irritable bowel syndrome (IBS)). Specifically, we compared plasma markers of CNS autoantibodies for diagnostic characteristics of the four groups (GWI, GW controls, ME/CFS, IBS).

For veterans with GWI, the results showed statistically increased levels of nine of the ten autoantibodies against neuronal “tubulin, neurofilament protein (NFP), Microtubule Associated Protein-2 (MAP-2), Microtubule Associated Protein-Tau (Tau), alpha synuclein (α-syn), calcium calmodulin kinase II (CaMKII)” and glial proteins “Glial Fibrillary Acidic Protein (GFAP), Myelin Associated Glycoprotein (MAG), Myelin Basic Protein (MBP), S100B” compared to healthy GW controls as well as civilians with ME/CFS and IBS.

Next, we summed all of the means of the CNS autoantibodies for each group into a new index score called the Neurodegeneration Index (NDI). The NDI was calculated for each tested group and showed veterans with GWI had statistically significantly higher NDI values than all three control groups. The present study confirmed the utility of the use of plasma autoantibodies for CNS proteins to distinguish among veterans with GWI and other healthy and symptomatic control groups.

Source: Mohamed B. Abou-Donia, Elizabeth S. Lapadula, Maxine H. Krengel, Emily Quinn, Jessica LeClair, Joseph Massaro, Lisa A. Conboy, Efi Kokkotou, Maria Abreu, Nancy G. Klimas, Daniel D. Nguyen and Kimberly Sullivan.  Using Plasma Autoantibodies of Central Nervous System Proteins to Distinguish Veterans with Gulf War Illness from Healthy and Symptomatic Controls. Brain Sci. 2020, 10(9), 610; https://doi.org/10.3390/brainsci10090610  https://www.mdpi.com/2076-3425/10/9/610/htm (Full text)

Exercise alters brain activation in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Gulf War Illness affects 25–30% of American veterans deployed to the 1990–91 Persian Gulf War and is characterized by cognitive post-exertional malaise following physical effort. Gulf War Illness remains controversial since cognitive post-exertional malaise is also present in the more common Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. An objective dissociation between neural substrates for cognitive post-exertional malaise in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome would represent a biological basis for diagnostically distinguishing these two illnesses.

Here, we used functional magnetic resonance imaging to measure neural activity in healthy controls and patients with Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome during an N-back working memory task both before and after exercise. Whole brain activation during working memory (2-Back > 0-Back) was equal between groups prior to exercise. Exercise had no effect on neural activity in healthy controls yet caused deactivation within dorsal midbrain and cerebellar vermis in Gulf War Illness relative to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients.

Further, exercise caused increased activation among Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients within the dorsal midbrain, left operculo-insular cortex (Rolandic operculum) and right middle insula. These regions-of-interest underlie threat assessment, pain, interoception, negative emotion and vigilant attention. As they only emerge post-exercise, these regional differences likely represent neural substrates of cognitive post-exertional malaise useful for developing distinct diagnostic criteria for Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

Source: Stuart D Washington, Rakib U Rayhan, Richard Garner, Destie Provenzano, Kristina Zajur, Florencia Martinez Addiego, John W VanMeter, James N Baraniuk, Exercise alters brain activation in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, Brain Communications, Volume 2, Issue 2, 2020, fcaa070, https://doi.org/10.1093/braincomms/fcaa070 https://academic.oup.com/braincomms/article/2/2/fcaa070/5885074 (Full text)

Machine Learning Detects Pattern of Differences in Functional Magnetic Resonance Imaging (fMRI) Data between Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI)

Abstract:

Background: Gulf War Illness (GWI) and Chronic Fatigue Syndrome (CFS) are two debilitating disorders that share similar symptoms of chronic pain, fatigue, and exertional exhaustion after exercise. Many physicians continue to believe that both are psychosomatic disorders and to date no underlying etiology has been discovered. As such, uncovering objective biomarkers is important to lend credibility to criteria for diagnosis and to help differentiate the two disorders.

Methods: We assessed cognitive differences in 80 subjects with GWI and 38 with CFS by comparing corresponding fMRI scans during 2-back working memory tasks before and after exercise to model brain activation during normal activity and after exertional exhaustion, respectively. Voxels were grouped by the count of total activity into the Automated Anatomical Labeling (AAL) atlas and used in an “ensemble” series of machine learning algorithms to assess if a multi-regional pattern of differences in the fMRI scans could be detected.

Results: A K-Nearest Neighbor (70%/81%), Linear Support Vector Machine (SVM) (70%/77%), Decision Tree (82%/82%), Random Forest (77%/78%), AdaBoost (69%/81%), Naïve Bayes (74%/78%), Quadratic Discriminant Analysis (QDA) (73%/75%), Logistic Regression model (82%/82%), and Neural Net (76%/77%) were able to differentiate CFS from GWI before and after exercise with an average of 75% accuracy in predictions across all models before exercise and 79% after exercise. An iterative feature selection and removal process based on Recursive Feature Elimination (RFE) and Random Forest importance selected 30 regions before exercise and 33 regions after exercise that differentiated CFS from GWI across all models, and produced the ultimate best accuracies of 82% before exercise and 82% after exercise by Logistic Regression or Decision Tree by a single model, and 100% before and after exercise when selected by any six or more models. Differential activation on both days included the right anterior insula, left putamen, and bilateral orbital frontal, ventrolateral prefrontal cortex, superior, inferior, and precuneus (medial) parietal, and lateral temporal regions. Day 2 had the cerebellum, left supplementary motor area and bilateral pre- and post-central gyri. Changes between days included the right Rolandic operculum switching to the left on Day 2, and the bilateral midcingulum switching to the left anterior cingulum.

Conclusion: We concluded that CFS and GWI are significantly differentiable using a pattern of fMRI activity based on an ensemble machine learning model.

Source: Provenzano D, Washington SD, Rao YJ, Loew M, Baraniuk J. Machine Learning Detects Pattern of Differences in Functional Magnetic Resonance Imaging (fMRI) Data between Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Brain Sci. 2020;10(7):E456. Published 2020 Jul 17. doi:10.3390/brainsci10070456 https://www.mdpi.com/2076-3425/10/7/456 (Full text)