Replicating human characteristics: A promising animal model of central fatigue

Highlights:

  • A new method: Modified Multiple Platform Method combined with alternate-day fasting.
  • Modeling method has successfully constructed animal model of central fatigue.
  • Our rat model mimics human emotional, cognitive, and physical fatigue.
  • Hippocampus and muscle tissues show damage and mitochondrial changes.
  • Mitochondrial dysfunction and oxidative stress in hippocampus and muscle tissues.

Abstract:

Central fatigue is a common pathological state characterized by psychological loss of drive, lack of appetite, drowsiness, and decreased psychic alertness. The mechanism underlying central fatigue is still unclear, and there is no widely accepted successful animal model that fully represents human characteristics. We aimed to construct a more clinically relevant and comprehensive animal model of central fatigue.

In this study, we utilized the Modified Multiple Platform Method (MMPM) combined with alternate-day fasting (ADF) to create the animal model. The model group rats are placed on a stationary water environment platform for sleep deprivation at a fixed time each day, and they were subjected to ADF treatment. On non-fasting days, the rats were allowed unrestricted access to food. This process was sustained over a period of 21 days.

We evaluated the model using behavioral assessments such as open field test, elevated plus maze testtail suspension testMorris water maze testgrip strength test, and forced swimming test, as well as serum biochemical laboratory indices. Additionally, we conducted pathological observations of the hippocampus and quadriceps muscle tissues, transmission electron microscope observation of mitochondrial ultrastructure, and assessment of mitochondrial energy metabolism and oxidative stress-related markers.

The results revealed that the model rats displayed emotional anomalies resembling symptoms of depression and anxiety, decreased exploratory behavior, decline in learning and memory function, and signs of skeletal muscle fatigue, successfully replicating human features of negative emotions, cognitive decline, and physical fatigue. Pathological damage and mitochondrial ultrastructural alterations were observed in the hippocampus and quadriceps muscle tissues, accompanied by abnormal mitochondrial energy metabolism and oxidative stress in the form of decreased ATP and increased ROS levels.

In conclusion, our ADF+MMPM model comprehensively replicated the features of human central fatigue and is a promising platform for preclinical research. Furthermore, the pivotal role of mitochondrial energy metabolism and oxidative stress damage in the occurrence of central fatigue in the hippocampus and skeletal muscle tissues was corroborated.

Source: Zhang Y, Zhang Z, Yu Q, Lan B, Shi Q, Li R, Jiao Z, Zhang W, Li F. Replicating human characteristics: A promising animal model of central fatigue. Brain Res Bull. 2024 Jun 15;212:110951. doi: 10.1016/j.brainresbull.2024.110951. Epub 2024 Apr 19. PMID: 38642899. https://www.sciencedirect.com/science/article/pii/S0361923024000844 (Full text)

The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability

Highlights:

  • Though a common symptom, fatigue is difficult to define and investigate, and occurs in a wide variety of disorders, with differing pathological causes.
  • This review aims to guide clinicians in how to approach fatigue and to suggest that neurophysiological tests may allow an understanding of its origin and severity.
  • The effectiveness of neurophysiological tests as cost-effective objective biomarkers for the assessment of fatigue has been summarised.

Abstract

Though a common symptom, fatigue is difficult to define and investigate, occurs in a wide variety of neurological and systemic disorders, with differing pathological causes. It is also often accompanied by a psychological component. As a symptom of long-term COVID-19 it has gained more attention.

In this review, we begin by differentiating fatigue, a perception, from fatigability, quantifiable through biomarkers. Central and peripheral nervous system and muscle disorders associated with these are summarised. We provide a comprehensive and objective framework to help identify potential causes of fatigue and fatigability in a given disease condition. It also considers the effectiveness of neurophysiological tests as objective biomarkers for its assessment. Among these, twitch interpolation, motor cortex stimulation, electroencephalography and magnetencephalography, and readiness potentials will be described for the assessment of central fatigability, and surface and needle electromyography (EMG), single fibre EMG and nerve conduction studies for the assessment of peripheral fatigability.

The purpose of this review is to guide clinicians in how to approach fatigue, and fatigability, and to suggest that neurophysiological tests may allow an understanding of their origin and interactions. In this way, their differing types and origins, and hence their possible differing treatments, may also be defined more clearly.

Source: Tankisi H, Versace V, Kuppuswamy A, Cole J. The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability. Clin Neurophysiol Pract. 2023 Dec 18;9:39-50. doi: 10.1016/j.cnp.2023.12.004. PMID: 38274859; PMCID: PMC10808861. https://www.sciencedirect.com/science/article/pii/S2467981X23000367 (Full text)

Reliability of physiological, psychological, and cognitive variables in chronic fatigue syndrome

Abstract:

The purpose of this study was to assess the reliability of specific physiological, psychological, and cognitive variables in 31 chronic fatigue syndrome (CFS) subjects and 31 matched control subjects. All variables were assessed weekly over a 4-week period and reliability was determined using an intraclass correlation coefficient (ICC). Results ranged from moderately to highly reliable for all variables assessed, except for mental and physical fatigue, which were of questionable reliability in both groups (ICC = 0.61 and 0.65, respectively, for the CFS group; 0.62 and 0.52 for the control group).

A Pearson product-moment correlation analysis that compared exercise performance with all psychological variables assessed, demonstrated a significant relationship between exercise performance and depression (r = .41, P = .02) in week 3 only, suggesting minimal association between objective performance and psychological responses. These correlation results support a central, as opposed to a peripheral, basis to the sensation of fatigue in CFS.

 

Source: Wallman KE, Morton AR, Goodman C, Grove R. Reliability of physiological, psychological, and cognitive variables in chronic fatigue syndrome. Res Sports Med. 2005 Jul-Sep;13(3):231-41. http://www.ncbi.nlm.nih.gov/pubmed/16392538