Saliva Fatigue Biomarker Index As a Marker for Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in a Community Based Sample

Abstract:

Objective: The prevalence of pediatric Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) has been estimated from an ethnically and sociodemographically diverse community-based random sample of 10,119 youth aged 5-17. A team of physicians made a final diagnosis of ME/CFS if the participants met criteria for up to three selected case definitions following medical and psychiatric evaluations. We assessed whether a salivary biomarker of fatigue could identify youth with ME/CFS.

Study design: We examined the ratio of the concentrations of 2 peptide fragments in saliva, referred to as the Fatigue Biomarker Index (FBI), in participants from our study diagnosed with ME/CFS (n=59) and matched controls (n=39).

Results: Significant overall differences were found in the FBI between those participants with severe ME/CFS and those with ME/CFS and the controls.

Conclusions: If confirmed in other populations, the FBI could serve as an objective test to aid in the diagnosis of severe ME/CFS.

Source: Jason LA, Kalns J, Richarte A, Katz BZ, Torres C. Saliva Fatigue Biomarker Index As a Marker for Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in a Community Based Sample. Fatigue. 2021;9(4):189-195. doi: 10.1080/21641846.2021.1994222. Epub 2021 Oct 27. PMID: 35186443; PMCID: PMC8855987.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8855987/ (Full text)

Submaximal Exercise Provokes Increased Activation of the Anterior Default Mode Network During the Resting State as a Biomarker of Postexertional Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by disabling fatigue and postexertional malaise. We developed a provocation paradigm with two submaximal bicycle exercise stress tests on consecutive days bracketed by magnetic resonance imaging, orthostatic intolerance, and symptom assessments before and after exercise in order to induce objective changes of exercise induced symptom exacerbation and cognitive dysfunction.

Method: Blood oxygenation level dependent (BOLD) scans were performed while at rest on the preexercise and postexercise days in 34 ME/CFS and 24 control subjects. Seed regions from the FSL data library with significant BOLD signals were nodes that clustered into networks using independent component analysis. Differences in signal amplitudes between groups on pre- and post-exercise days were determined by general linear model and ANOVA.

Results: The most striking exercise-induced effect in ME/CFS was the increased spontaneous activity in the medial prefrontal cortex that is the anterior node of the Default Mode Network (DMN). In contrast, this region had decreased activation for controls. Overall, controls had higher BOLD signals suggesting reduced global cerebral blood flow in ME/CFS.

Conclusion: The dynamic increase in activation of the anterior DMN node after exercise may be a biomarker of postexertional malaise and symptom exacerbation in CFS. The specificity of this postexertional finding in ME/CFS can now be assessed by comparison to post-COVID fatigue, Gulf War Illness, fibromyalgia, chronic idiopathic fatigue, and fatigue in systemic medical and psychiatric diseases.

Source: Rayhan RU, Baraniuk JN. Submaximal Exercise Provokes Increased Activation of the Anterior Default Mode Network During the Resting State as a Biomarker of Postexertional Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurosci. 2021 Dec 15;15:748426. doi: 10.3389/fnins.2021.748426. PMID: 34975370; PMCID: PMC8714840. https://www.frontiersin.org/articles/10.3389/fnins.2021.748426/full  (Full text)

Potential of Activin B as a Clinical Biomarker in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Reliable serum biomarkers are of immense need for diagnostic purposes of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-a disabling and complex disease for which diagnosis is mainly based on clinical symptoms. The aim of this study was to evaluate a possible diagnostic potential of activin B by directly comparing 134 cases of ME/CFS with 54 healthy controls.

Analyses of human activin B level in plasma samples were performed using a validated human activin B ELISA assay. The results of the study show that activin B levels did not differ statistically significantly between ME/CFS patients and healthy controls (p = 0.6511). No gender or age-related differences in activin B levels were observed in the ME/CFS group and healthy controls. The level of activin B tended to decrease with increasing visual analogue scale score (r = -0.2004; p = 0.5085) nevertheless the results obtained so far does not support the clinical utility of activin B as a biomarker for ME/CFS.

Source: Gravelsina S, Nora-Krukle Z, Vilmane A, Svirskis S, Vecvagare K, Krumina A, Murovska M. Potential of Activin B as a Clinical Biomarker in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules. 2021 Aug 11;11(8):1189. doi: 10.3390/biom11081189. PMID: 34439855. https://pubmed.ncbi.nlm.nih.gov/34439855/

Impact of Long-Term Cryopreservation on Blood Immune Cell Markers in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for Biomarker Discovery

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex neuroimmune disorder characterized by numerous symptoms of unknown etiology. The ME/CFS immune markers reported so far have failed to generate a clinical consensus, perhaps partly due to the limitations of biospecimen biobanking. To address this issue, we performed a comparative analysis of the impact of long-term biobanking on previously identified immune markers and also explored additional potential immune markers linked to infection in ME/CFS.

A correlation analysis of marker cryostability across immune cell subsets based on flow cytometry immunophenotyping of fresh blood and frozen PBMC samples collected from individuals with ME/CFS (n = 18) and matched healthy controls (n = 18) was performed. The functionality of biobanked samples was assessed on the basis of cytokine production assay after stimulation of frozen PBMCs. T cell markers defining Treg subsets and the expression of surface glycoprotein CD56 in T cells and the frequency of the effector CD8 T cells, together with CD57 expression in NK cells, appeared unaltered by biobanking. By contrast, NK cell markers CD25 and CD69 were notably increased, and NKp46 expression markedly reduced, by long-term cryopreservation and thawing. Further exploration of Treg and NK cell subsets failed to identify significant differences between ME/CFS patients and healthy controls in terms of biobanked PBMCs.

Our findings show that some of the previously identified immune markers in T and NK cell subsets become unstable after cell biobanking, thus limiting their use in further immunophenotyping studies for ME/CFS. These data are potentially relevant for future multisite intervention studies and cooperative projects for biomarker discovery using ME/CFS biobanked samples. Further studies are needed to develop novel tools for the assessment of biomarker stability in cryopreserved immune cells from people with ME/CFS.

Source: Gómez-Mora E, Carrillo J, Urrea V, Rigau J, Alegre J, Cabrera C, Oltra E, Castro-Marrero J, Blanco J. Impact of Long-Term Cryopreservation on Blood Immune Cell Markers in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for Biomarker Discovery. Front Immunol. 2020 Nov 17;11:582330. doi: 10.3389/fimmu.2020.582330. PMID: 33329554; PMCID: PMC7732598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732598/  (Full text)

A SWATH-MS analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious and complex physical illness that affects all body systems with a multiplicity of symptoms, but key hallmarks of the disease are pervasive fatigue and ‘post-exertional malaise’, exacerbation after physical and/or mental activity of the intrinsic fatigue and other symptoms that can be highly debilitating and last from days to months. Although the disease can vary widely between individuals, common symptoms also include pain, cognitive deficits, sleep dysfunction, as well as immune, neurological and autonomic symptoms. Typically, it is a very isolating illness socially, carrying a stigma because of the lack of understanding of the cause and pathophysiology.

Methods: To gain insight into the pathophysiology of ME/CFS, we examined the proteomes of peripheral blood mononuclear cells (PBMCs) by SWATH-MS analysis in a small well-characterised group of patients and matched controls. A principal component analysis (PCA) was used to stratify groups based on protein abundance patterns, which clearly segregated the majority of the ME/CFS patients (9/11) from the controls. This majority subgroup of ME/CFS patients was then further compared to the control group.

Results: A total of 60 proteins in the ME/CFS patients were differentially expressed (P < 0.01, Log10 (Fold Change) > 0.2 and < -0.2). Comparison of the PCA selected subgroup of ME/CFS patients (9/11) with controls increased the number of proteins differentially expressed to 99. Of particular relevance to the core symptoms of fatigue and post-exertional malaise experienced in ME/CFS, a proportion of the identified proteins in the ME/CFS groups were involved in mitochondrial function, oxidative phosphorylation, electron transport chain complexes, and redox regulation. A significant number were also involved in previously implicated disturbances in ME/CFS, such as the immune inflammatory response, DNA methylation, apoptosis and proteasome activation.

Conclusions: The results from this study support a model of deficient ATP production in ME/CFS, compensated for by upregulation of immediate pathways upstream of Complex V that would suggest an elevation of oxidative stress. This study and others have found evidence of a distinct pathology in ME/CFS that holds promise for developing diagnostic biomarkers.

Source: Sweetman E, Kleffmann T, Edgar C, de Lange M, Vallings R, Tate W. A SWATH-MS analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. J Transl Med. 2020 Sep 24;18(1):365. doi: 10.1186/s12967-020-02533-3. PMID: 32972442. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02533-3 (Full text)

Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterised by fatigue and post-exertional malaise. Its pathogenesis is poorly understood. GDF15 is a circulating protein secreted by cells in response to a variety of stressors. The receptor for GDF15 is expressed in the brain, where its activation results in a range of responses. Among the conditions in which circulating GDF15 levels are highly elevated are mitochondrial disorders, where early skeletal muscle fatigue is a key symptom. We hypothesised that GDF15 may represent a marker of cellular stress in ME/CFS.

METHODS: GDF15 was measured in serum from patients with ME/CFS (n = 150; 100 with mild/moderate and 50 with severe symptoms), “healthy volunteers” (n = 150) and a cohort of patients with multiple sclerosis (n = 50).

RESULTS: Circulating GDF15 remained stable in a subset of ME/CFS patients when sampled on two occasions ~ 7 months (IQR 6.7-8.8) apart, 720 pg/ml (95% CI 625-816) vs 670 pg/ml (95% CI 598-796), P = 0.5. GDF15 levels were 491 pg/ml in controls (95% CI 429-553), 546 pg/ml (95% CI 478-614) in MS patients, 560 pg/ml (95% CI 502-617) in mild/moderate ME/CFS patients and 602 pg/ml (95% CI 531-674) in severely affected ME/CFS patients. Accounting for potential confounders, severely affected ME/CFS patients had GDF15 concentrations that were significantly increased compared to healthy controls (P = 0.01). GDF15 levels were positively correlated (P = 0.026) with fatigue scores in ME/CFS.

CONCLUSIONS: Severe ME/CFS is associated with increased levels of GDF15, a circulating biomarker of cellular stress that appears which stable over several months.

Source: Melvin A, Lacerda E, Dockrell HM, O’Rahilly S, Nacul L. Circulating levels of GDF15 in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med. 2019 Dec 4;17(1):409. doi: 10.1186/s12967-019-02153-6. https://www.ncbi.nlm.nih.gov/pubmed/31801546

Inflammatory proteins are altered in chronic fatigue syndrome-A systematic review and meta-analysis

Abstract:

Immune dysfunction has been posited as a key element in the aetiology of chronic fatigue syndrome (CFS) since the illness was first conceived. However, systematic reviews have yet to quantitatively synthesise inflammatory biomarkers across the literature. We undertook a systematic review and meta-analysis to quantify available data on circulating inflammatory proteins, examining studies recruiting patients with a CFS diagnosis and a non-affected control group. Results were meta-analysed from 42 studies.

Patients with CFS had significantly elevated tumour necrosis factor (ES = 0.274, p < 0.001), interleukin-2 (ES = 0.203, p = 0.006), interleukin-4 (ES = 0.373, p = 0.004), transforming growth factor-β (ES = 0.967, p < 0.001) and c-reactive protein (ES = 0.622, p = 0.019). 12 proteins did not differ between groups.

These data provide some support for an inflammatory component in CFS, although inconsistency of results indicates that inflammation is unlikely to be a primary feature in all those suffering from this disorder. It is hoped that further work will elucidate whether there are subgroups of patients with clinically-relevant inflammatory dysfunction, and whether inflammatory cytokines may provide a prognostic biomarker or moderate treatment effects.

Copyright © 2019. Published by Elsevier Ltd.

Source: Strawbridge R, Sartor ML, Scott F, Cleare AJ. Inflammatory proteins are altered in chronic fatigue syndrome-A systematic review and meta-analysis. Neurosci Biobehav Rev. 2019 Aug 26;107:69-83. doi: 10.1016/j.neubiorev.2019.08.011. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31465778

Biomarker Test for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

By Jennifer Abbasi

Myalgic encephalomyelitis/chronic fatigue syndrome affects at least 2 million people in the United States. Despite its prevalence, there’s no laboratory test for the disease, and its diagnosis is based on symptoms like exhaustion, unrefreshing sleep, and light sensitivity. For patients with this debilitating condition, getting a diagnosis is often a long and expensive process. Now, a long-awaited biomarker-based test for the mysterious disease could be on the horizon.

Read the rest of this article HERE.

JAMA. 2019;322(2):107. doi:10.1001/jama.2019.8890

A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls

Abstract:

BACKGROUND: Fibromyalgia syndrome (FMS) is a chronic pain syndrome. A plausible pathogenesis of the disease is uncertain and the pursuit of measurable biomarkers for objective identification of affected individuals is a continuing endeavour in FMS research. Our objective was to perform an explorative metabolomics study (1) to elucidate the global urinary metabolite profile of patients suffering from FMS, and (2) to explore the potential of this metabolite information to augment existing medical practice in diagnosing the disease.

METHODS: We selected patients with a medical history of persistent FMS (n = 18), who described their recent state of the disease through the Fibromyalgia Impact Questionnaire (FIQR) and an in-house clinical questionnaire (IHCQ). Three control groups were used: first-generation family members of the patients (n = 11), age-related individuals without any indications of FMS or related conditions (n = 10), and healthy young (18-22 years) individuals (n = 20). All subjects were female and the biofluid under investigation was urine. Correlation analysis of the FIQR showed the FMS patients represented a well-defined disease group for this metabolomics study. Spectral analyses of urine were conducted using a 500 MHz 1H nuclear magnetic resonance (NMR) spectrometer; data processing and analyses were performed using Matlab, R, SPSS and SAS software.

RESULTS AND DISCUSSION: Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS patients, and significant increases in metabolites related to the gut microbiome (hippuric, succinic and lactic acids) were observed. We have developed an algorithm for the diagnosis of FMS consisting of three metabolites – succinic acid, taurine and creatine – that have a good level of diagnostic accuracy (Receiver Operating Characteristic (ROC) analysis – area under the curve 90%) and on the pain and fatigue symptoms for the selected FMS patient group.

CONCLUSION: Our data and comparative analyses indicated an altered metabolic profile of patients with FMS, analytically detectable within their urine. Validation studies may substantiate urinary metabolites to supplement information from medical assessment, tender-point measurements and FIQR questionnaires for an improved objective diagnosis of FMS.

Source: Malatji BG, Meyer H, Mason S, Engelke UFH, Wevers RA, van Reenen M, Reinecke CJ. A diagnostic biomarker profile for fibromyalgia syndrome based on an NMR metabolomics study of selected patients and controls. BMC Neurol. 2017 May 11;17(1):88. doi: 10.1186/s12883-017-0863-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426044/ (Full article)

Chronic Fatigue Syndrome: The Current Status and Future Potentials of Emerging Biomarkers

Abstract:

Chronic fatigue syndrome (CFS) remains an incompletely characterized illness, in part due to controversy regarding its definition, biological basis and diagnosis. Biomarkers are objective measures that may lead to improvements in our understanding of CFS by providing a more coherent and consistent approach to study, diagnosis and treatment of the illness. Such metrics may allow us to distinguish between CFS subtypes – each defined by characteristic biomarkers – currently conflated under the single, heterogeneous condition of CFS. These delineations, in turn, may guide more granular, focused, and targeted treatment strategies based on more precise characterizations of the illness. Here, we review potential CFS biomarkers related to neurological and immunological components of the illness, and discuss how these biomarkers may be used to move the field of CFS forward, emphasizing clinical utility and potential routes of future research.

 

Source: Fischer DB, William AH, Strauss AC, Unger ER, Jason L, Marshall GD Jr, Dimitrakoff JD. Chronic Fatigue Syndrome: The Current Status and Future Potentials of Emerging Biomarkers. Fatigue. 2014 Jun 1;2(2):93-109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052724/ (Full article)