Bioenergetic and Proteomic Profiling of Immune Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients: An Exploratory Study

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous, debilitating, and complex disease. Along with disabling fatigue, ME/CFS presents an array of other core symptoms, including autonomic nervous system (ANS) dysfunction, sustained inflammation, altered energy metabolism, and mitochondrial dysfunction. Here, we evaluated patients’ symptomatology and the mitochondrial metabolic parameters in peripheral blood mononuclear cells (PBMCs) and plasma from a clinically well-characterised cohort of six ME/CFS patients compared to age- and gender-matched controls.

We performed a comprehensive cellular assessment using bioenergetics (extracellular flux analysis) and protein profiles (quantitative mass spectrometry-based proteomics) together with self-reported symptom measures of fatigue, ANS dysfunction, and overall physical and mental well-being. This ME/CFS cohort presented with severe fatigue, which correlated with the severity of ANS dysfunction and overall physical well-being.

PBMCs from ME/CFS patients showed significantly lower mitochondrial coupling efficiency. They exhibited proteome alterations, including altered mitochondrial metabolism, centred on pyruvate dehydrogenase and coenzyme A metabolism, leading to a decreased capacity to provide adequate intracellular ATP levels. Overall, these results indicate that PBMCs from ME/CFS patients have a decreased ability to fulfill their cellular energy demands.

Source: Fernandez-Guerra P, Gonzalez-Ebsen AC, Boonen SE, Courraud J, Gregersen N, Mehlsen J, Palmfeldt J, Olsen RKJ, Brinth LS. Bioenergetic and Proteomic Profiling of Immune Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients: An Exploratory Study. Biomolecules. 2021 Jun 29;11(7):961. doi: 10.3390/biom11070961. PMID: 34209852. https://pubmed.ncbi.nlm.nih.gov/34209852/

Understanding Muscle Dysfunction in Chronic Fatigue Syndrome

Abstract:

Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level.

Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis.

Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction.

Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME.

 

Source: Rutherford G, Manning P, Newton JL. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome. J Aging Res. 2016;2016:2497348. doi: 10.1155/2016/2497348. Epub 2016 Feb 22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779819/ (Full article)

 

Loss of capacity to recover from acidosis on repeat exercise in chronic fatigue syndrome: a case-control study

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) patients frequently describe difficulties with repeat exercise. Here, we explore muscle bioenergetic function in response to three bouts of exercise.

METHODS: A total of 18 CFS (CDC 1994) patients and 12 sedentary controls underwent assessment of maximal voluntary contraction (MVC), repeat exercise with magnetic resonance spectroscopy and cardio-respiratory fitness test to determine anaerobic threshold.

RESULT: Chronic fatigue syndrome patients undertaking MVC fell into two distinct groups: 8 (45%) showed normal PCr depletion in response to exercise at 35% of MVC (PCr depletion >33%; lower 95% CI for controls); 10 CFS patients had low PCr depletion (generating abnormally low MVC values). The CFS whole group exhibited significantly reduced anaerobic threshold, heart rate, VO(2) , VO(2) peak and peak work compared to controls. Resting muscle pH was similar in controls and both CFS patient groups. However, the CFS group achieving normal PCr depletion values showed increased intramuscular acidosis compared to controls after similar work after each of the three exercise periods with no apparent reduction in acidosis with repeat exercise of the type reported in normal subjects. This CFS group also exhibited significant prolongation (almost 4-fold) of the time taken for pH to recover to baseline.

CONCLUSION: When exercising to comparable levels to normal controls, CFS patients exhibit profound abnormality in bioenergetic function and response to it. Although exercise intervention is the logical treatment for patients showing acidosis, any trial must exclude subjects who do not initiate exercise as they will not benefit. This potentially explains previous mixed results in CFS exercise trials.

© 2011 The Authors. European Journal of Clinical Investigation

© 2011 Stichting European Society for Clinical Investigation Journal Foundation.

 

Source: Jones DE, Hollingsworth KG, Jakovljevic DG, Fattakhova G, Pairman J, Blamire AM, Trenell MI, Newton JL. Loss of capacity to recover from acidosis on repeat exercise in chronic fatigue syndrome: a case-control study. Eur J Clin Invest. 2012 Feb;42(2):186-94. doi: 10.1111/j.1365-2362.2011.02567.x. Epub 2011 Jul 12. https://www.ncbi.nlm.nih.gov/pubmed/21749371