Migraine in gulf war illness and chronic fatigue syndrome: prevalence, potential mechanisms, and evaluation

Abstract:

OBJECTIVE: To assess the prevalence of headache subtypes in Gulf War Illness (GWI) and Chronic Fatigue Syndrome (CFS) compared to controls.

BACKGROUND: Approximately, 25% of the military personnel who served in the 1990-1991 Persian Gulf War have developed GWI. Symptoms of GWI and CFS have considerable overlap, including headache complaints. Migraines are reported in CFS. The type and prevalence of headaches in GWI have not been adequately assessed.

METHODS: 50 GWI, 39 CFS and 45 controls had structured headache evaluations based on the 2004 International Headache Society criteria. All subjects had history and physical examinations, fatigue and symptom related questionnaires, measurements of systemic hyperalgesia (dolorimetry), and assessments for exclusionary conditions.

RESULTS: Migraines were detected in 64% of GWI (odds ratio = 11.6 [4.1-32.5]) (mean [±95% CI]) and 82% of CFS subjects (odds ratio = 22.5 [7.8-64.8]) compared to only 13% of controls. There was a predominance of females in the CFS compared to GWI and controls. However, migraine status was independent of gender in GWI and CFS groups (x (2) = 2.7; P = 0.101). Measures of fatigue, pain, and other ancillary criteria were comparable between GWI and CFS subjects with and without headache.

CONCLUSION: The high prevalence of migraine in CFS was confirmed and extended to GWI subjects. GWI and CFS may share dysfunctional central pathophysiological pathways that contribute to migraine and subjective symptoms. The high migraine prevalence warrants the inclusion of a structured headache evaluation in GWI and CFS subjects, and treatment when present.

 

Source: Rayhan RU, Ravindran MK, Baraniuk JN. Migraine in gulf war illness and chronic fatigue syndrome: prevalence, potential mechanisms, and evaluation. Front Physiol. 2013 Jul 24;4:181. doi: 10.3389/fphys.2013.00181. ECollection 2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721020/ (Full article)

 

Dyspnea in Chronic Fatigue Syndrome (CFS): comparison of two prospective cross-sectional studies

Abstract:

Chronic Fatigue Syndrome (CFS) subjects have many systemic complaints including shortness of breath. Dyspnea was compared in two CFS and control cohorts to characterize pathophysiology. Cohort 1 of 257 CFS and 456 control subjects were compared using the Medical Research Council chronic Dyspnea Scale (MRC Score; range 0-5). Cohort 2 of 106 CFS and 90 controls answered a Dyspnea Severity Score (range 0-20) adapted from the MRC Score. Subsets of both cohorts completed CFS Severity Scores, fatigue, and other questionnaires. A subset had pulmonary function and total lung capacity measurements.

Results show MRC Scores were equivalent between sexes in Cohort 1 CFS (1.92 [1.72-2.16]; mean [95% C.I.]) and controls (0.31 [0.23-0.39]; p<0.0001). Receiver-operator curves identified 2 as the threshold for positive MRC Scores in Cohort 1. This indicated 54% of CFS, but only 3% of controls, had significant dyspnea.

In Cohort 2, Dyspnea Score threshold of 4 indicated shortness of breath in 67% of CFS and 23% of controls. Cohort 2 Dyspnea Scores were higher for CFS (7.80 [6.60-9.00]) than controls (2.40 [1.60-3.20]; p<0.0001). CFS had significantly worse fatigue and other complaints compared to controls. Pulmonary function was normal in CFS, but Borg scores and sensations of chest pain and dizziness were significantly greater during testing than controls. General linear model of Cohort 2 CFS responses linked Dyspnea with rapid heart rate, chest pain and dizziness.

In conclusion, sensory hypersensitivity without airflow limitation contributed to dyspnea in CFS. Correlates of dyspnea in controls were distinct from CFS suggesting different mechanisms.

 

Source: Ravindran M, Adewuyi O, Zheng Y, Rayhan RU, Le U, Timbol C, Merck S, Esteitie R, Read C, Cooney M, Baraniuk J. Dyspnea in Chronic Fatigue Syndrome (CFS): comparison of two prospective cross-sectional studies. Glob J Health Sci. 2012 Dec 12;5(2):94-110. doi: 10.5539/gjhs.v5n2p94. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209305/ (Full article)

 

A Chronic Fatigue Syndrome (CFS) severity score based on case designation criteria

Abstract:

BACKGROUND: Chronic Fatigue Syndrome case designation criteria are scored as physicians’ subjective, nominal interpretations of patient fatigue, pain (headaches, myalgia, arthralgia, sore throat and lymph nodes), cognitive dysfunction, sleep and exertional exhaustion.

METHODS: Subjects self-reported symptoms using an anchored ordinal scale of 0 (no symptom), 1 (trivial complaints), 2 (mild), 3 (moderate), and 4 (severe). Fatigue of 3 or 4 distinguished “Fatigued” from “Not Fatigued” subjects. The sum of the 8(Sum8) ancillary criteria was tested as a proxy for fatigue. All subjects had history and physical examinations to exclude medical fatigue, and ensure categorization as healthy or CFS subjects.

RESULTS: Fatigued subjects were divided into CFS with ≥4 symptoms or Chronic Idiopathic Fatigue (CIF) with ≤3 symptoms. ROC of Sum8 for CFS and Not Fatigued subjects generated a threshold of 14 (specificity=0.934; sensitivity=0.928). CFS (n=256) and CIF (n=55) criteria were refined to include Sum8≥14 and ≤13, respectively. Not Fatigued subjects had highly skewed Sum8 responses. Healthy Controls (HC; n=269) were defined by fatigue≤2 and Sum8≤13. Those with Sum8≥14 were defined as CFS-Like With Insufficient Fatigue Syndrome (CFSLWIFS; n=20). Sum8 and Fatigue were highly correlated (R(2)=0.977; Cronbach’s alpha=0.924) indicating an intimate relationship between symptom constructs. Cluster analysis suggested 4 clades each in CFS and HC. Translational utility was inferred from the clustering of proteomics from cerebrospinal fluid.

CONCLUSIONS: Plotting Fatigue severity versus Sum8 produced an internally consistent classifying system. This is a necessary step for translating symptom profiles into fatigue phenotypes and their pathophysiological mechanisms.

 

Source: Baraniuk JN, Adewuyi O, Merck SJ, Ali M, Ravindran MK, Timbol CR, Rayhan R, Zheng Y, Le U, Esteitie R, Petrie KN. A Chronic Fatigue Syndrome (CFS) severity score based on case designation criteria. Am J Transl Res. 2013;5(1):53-68. Epub 2013 Jan 21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560481/ (Full article)

 

No serological evidence for a role of HHV-6 infection in chronic fatigue syndrome

Abstract:

Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B) are associated with a variety of conditions including rash, fever, and encephalitis and may play a role in several neurological diseases. Here luciferase immunoprecipitation systems (LIPS) was used to develop HHV-6 serologic diagnostic tests using antigens encoded by the U11 gene from HHV-6A (p100) and HHV-6B (p101).

Analysis of the antibody responses against Renilla luciferase fusions with different HHV-6B p101 fragments identified an antigenic fragment (amino acids 389 to 858) that demonstrated ~86% seropositivity in serum samples from healthy US blood donors. Additional experiments detected a HHV-6A antigenic fragment (amino acids 751-870) that showed ~48% antibody seropositivity in samples from Mali, Africa, a known HHV-6A endemic region. In contrast to the high levels of HHV-6A immunoreactivity seen in the African samples, testing of US blood donors with the HHV-6A p100 antigenic fragment revealed little immunoreactivity.

To potentially explore the role of HHV-6 infection in human disease, a blinded cohort of controls (n=59) and chronic fatigue syndrome (CFS) patients (n=72) from the US was examined for serum antibodies. While only a few of the controls and CFS patients showed high level immunoreactivity with HHV-6A, a majority of both the controls and CFS patients showed significant immunoreactivity with HHV-6B. However, no statistically significant differences in antibody levels or frequency of HHV-6A or HHV-6B infection were detected between the controls and CFS patients. These findings highlight the utility of LIPS for exploring the seroepidemiology of HHV-6A and HHV-6B infection, but suggest that these viruses are unlikely to play a role in the pathogenesis of CFS.

 

Source: Burbelo PD, Bayat A, Wagner J, Nutman TB, Baraniuk JN, Iadarola MJ. No serological evidence for a role of HHV-6 infection in chronic fatigue syndrome. Am J Transl Res. 2012;4(4):443-51. Epub 2012 Oct 10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493030/ (Full article)

 

Migraine headaches in chronic fatigue syndrome (CFS): comparison of two prospective cross-sectional studies

Abstract:

BACKGROUND: Headaches are more frequent in Chronic Fatigue Syndrome (CFS) than healthy control (HC) subjects. The 2004 International Headache Society (IHS) criteria were used to define CFS headache phenotypes.

METHODS: Subjects in Cohort 1 (HC = 368; CFS = 203) completed questionnaires about many diverse symptoms by giving nominal (yes/no) answers. Cohort 2 (HC = 21; CFS = 67) had more focused evaluations. They scored symptom severities on 0 to 4 anchored ordinal scales, and had structured headache evaluations. All subjects had history and physical examinations; assessments for exclusion criteria; questionnaires about CFS related symptoms (0 to 4 scale), Multidimensional Fatigue Inventory (MFI) and Medical Outcome Survey Short Form 36 (MOS SF-36).

RESULTS: Demographics, trends for the number of diffuse “functional” symptoms present, and severity of CFS case designation criteria symptoms were equivalent between CFS subjects in Cohorts 1 and 2. HC had significantly fewer symptoms, lower MFI and higher SF-36 domain scores than CFS in both cohorts. Migraine headaches were found in 84%, and tension-type headaches in 81% of Cohort 2 CFS. This compared to 5% and 45%, respectively, in HC. The CFS group had migraine without aura (60%; MO; CFS+MO), with aura (24%; CFS+MA), tension headaches only (12%), or no headaches (4%). Co-morbid tension and migraine headaches were found in 67% of CFS. CFS+MA had higher severity scores than CFS+MO for the sum of scores for poor memory, dizziness, balance, and numbness (“Neuro-construct”, p = 0.002) and perceived heart rhythm disturbances, palpitations and noncardiac chest pain (“Cardio-construct”; p = 0.045, t-tests after Bonferroni corrections). CFS+MO subjects had lower pressure-induced pain thresholds (2.36 kg [1.95-2.78; 95% C.I.] n = 40) and a higher prevalence of fibromyalgia (47%; 1990 criteria) compared to HC (5.23 kg [3.95-6.52] n = 20; and 0%, respectively). Sumatriptan was beneficial for 13 out of 14 newly diagnosed CFS migraine subjects.

CONCLUSIONS: CFS subjects had higher prevalences of MO and MA than HC, suggesting that mechanisms of migraine pathogenesis such as central sensitization may contribute to CFS pathophysiology.

CLINICAL TRIAL REGISTRATION: Georgetown University IRB # 2006-481

TRIAL REGISTRATION: ClinicalTrials.gov NCT00810329 NCT00810329.

 

Source: Ravindran MK, Zheng Y, Timbol C, Merck SJ, Baraniuk JN. Migraine headaches in chronic fatigue syndrome (CFS): comparison of two prospective cross-sectional studies. BMC Neurol. 2011 Mar 5;11:30. doi: 10.1186/1471-2377-11-30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058027/ (Full article)

 

Relationships among rhinitis, fibromyalgia, and chronic fatigue

Abstract:

New information about the pathophysiology of idiopathic nonallergic rhinopathy indicates a high prevalence in chronic fatigue syndrome (CFS). This article shows the relevance of CFS and allied disorders to allergy practice. CFS has significant overlap with systemic hyperalgesia (fibromyalgia), autonomic dysfunction (irritable bowel syndrome and migraine headaches), sensory hypersensitivity (dyspnea; congestion; rhinorrhea; and appreciation of visceral nociception in the esophagus, gastrointestinal tract, bladder, and other organs), and central nervous system maladaptations (central sensitization) recorded by functional magnetic resonance imaging (fMRI).

Neurological dysfunction may account for the overlap of CFS with idiopathic nonallergic rhinopathy. Scientific advances are in fMRI, nociceptive sensor expression, and, potentially, infection with xenotropic murine leukemia-related virus provide additional insights to novel pathophysiological mechanisms of the “functional” complaints of these patients that are mistakenly interpreted as allergic syndromes. As allergists, we must accept the clinical challenges posed by these complex patients and provide proper diagnoses, assurance, and optimum care even though current treatment algorithms are lacking.

 

Source: Baraniuk JN, Zheng Y. Relationships among rhinitis, fibromyalgia, and chronic fatigue. Allergy Asthma Proc. 2010 May-Jun;31(3):169-78. doi: 10.2500/aap.2010.31.3311. https://www.ncbi.nlm.nih.gov/pubmed/20615318

 

A Chronic Fatigue Syndrome – related proteome in human cerebrospinal fluid

Abstract:

BACKGROUND: Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects.

METHODS: Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 mul/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 mul/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis.

RESULTS: Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of >or=1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were alpha-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described.

CONCLUSION: This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared.

 

Source: Baraniuk JN, Casado B, Maibach H, Clauw DJ, Pannell LK, Hess S S. A Chronic Fatigue Syndrome – related proteome in human cerebrospinal fluid. BMC Neurol. 2005 Dec 1;5:22. http://www.ncbi.nlm.nih.gov/pubmed/16321154

 

Urinary electrophoretic profiles from chronic fatigue syndrome and chronic fatigue syndrome/fibromyalgia patients: a pilot study for achieving their normalization

Abstract:

Aim of our study was to determine if there were distinct, disease-related patterns of urinary analytes in chronic fatigue syndrome (CFS) and chronic fatigue syndrome/fibromyalgia (CFS/FM) compared to normal controls (NC).

Urine was collected from these subjects for two consecutive 24 h periods and aliquots were submitted to micellar electrokinetic chromatography (MEKC). To compensate for the differences in peak migration times, these were normalized from the 35 min duration of run to a 100-point scale, and each peak was assigned its normalized time measure. Peak heights were also normalized by dividing the mAU by that of the internal standard (creatinine) and multiplying by 100. MEKC with normalization for peak height and migration time generated comparable results within each of the patient groups.

CFS/FM and CFS had significant differences in peaks compared to NC that may be of significance as biomarkers of illnesses.

 

Source: Casado B, Zanone C, Annovazzi L, Iadarola P, Whalen G, Baraniuk JN. Urinary electrophoretic profiles from chronic fatigue syndrome and chronic fatigue syndrome/fibromyalgia patients: a pilot study for achieving their normalization. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Jan 5;814(1):43-51. http://www.ncbi.nlm.nih.gov/pubmed/15607706

 

Neuropathology in rhinosinusitis

Abstract:

Pathophysiologic differences in neural responses to hypertonic saline (HTS) were investigated in subjects with acute sinusitis (n = 25), subjects with chronic fatigue syndrome (CFS) with nonallergic rhinitis (n = 14), subjects with active allergic rhinitis (AR; n = 17), and normal (n = 20) subjects. Increasing strengths of HTS were sprayed into their nostrils at 5-minute intervals. Sensations of nasal pain, blockage, and drip increased with concentration and were significantly elevated above normal. These parallels suggested activation of similar subsets of afferent neurons.

Urea and lysozyme secretion were dose dependent in all groups, suggesting that serous cell exocytosis was one source of urea after neural stimulation. Only AR and normal groups had mucin dose responses and correlations between symptoms and lysozyme secretion (R(2) = 0.12-0.23). The lysozyme dose responses may represent axon responses in these groups. The neurogenic stimulus did not alter albumin (vascular) exudation in any group. Albumin and mucin concentrations were correlated in sinusitis, suggesting that nonneurogenic factors predominated in sinusitis mucous hypersecretion. CFS had neural hypersensitivity (pain) but reduced serous cell secretion. HTS nasal provocations identified significant, unique patterns of neural and mucosal dysregulation in each rhinosinusitis syndrome.

 

Source: Baraniuk JN, Petrie KN, Le U, Tai CF, Park YJ, Yuta A, Ali M, Vandenbussche CJ, Nelson B. Neuropathology in rhinosinusitis. Am J Respir Crit Care Med. 2005 Jan 1;171(1):5-11. Epub 2004 Oct 11. http://www.ncbi.nlm.nih.gov/pubmed/15477496

 

A tender sinus does not always mean rhinosinusitis

Abstract:

BACKGROUND: Sinus tenderness has not been quantitatively assessed.

OBJECTIVE: We sought to compare sinus and systemic tenderness in rhinosinusitis, allergic rhinitis, and chronic fatigue syndrome (CFS), and healthy (non-CFS) groups.

METHODS: Cutaneous pressures (kg/cm(2)) causing pain at 5 sinus and 18 systemic sites were measured in acute and chronic rhinosinusitis, active allergic rhinitis, healthy non-CFS/no rhinosinusitis, and CFS subjects.

RESULTS: Sinus thresholds differed significantly (P </= 10(-11), ANOVA) between non-CFS/no rhinosinusitis (1.59 +/- 0.14 kg/cm(2), mean +/- 95% CI, n = 117), allergic rhinitis (1.19 +/- 0.31, n = 30), exacerbations of chronic rhinosinusitis (1.25 +/- 0.26, n = 25), non-CFS/chronic rhinosinusitis (1.23 +/- 0.27, n = 23), acute rhinosinusitis (1.10 +/- 0.20, n = 22), CFS/no rhinosinusitis (0.98 +/- 0.15, n = 70), and CFS/chronic rhinosinusitis (0.78 +/- 0.12, n = 56). Systemic pressure thresholds were lower for CFS (1.46 +/- 0.15) than for non-CFS (2.67 +/- 0.22, P </= 10(-11)).

CONCLUSIONS: The lower sinus thresholds of rhinosinusitis groups validated the sign of sinus tenderness. Sinus and systemic thresholds were both 44% lower in CFS than in non-CFS subjects, suggesting that systemic hyperalgesia contributed to CFS sinus tenderness and “rhinosinusitis” complaints.

 

Source: Naranch K, Park YJ, Repka-Ramirez MS, Velarde A, Clauw D, Baraniuk JN. A tender sinus does not always mean rhinosinusitis. Otolaryngol Head Neck Surg. 2002 Nov;127(5):387-97. http://www.ncbi.nlm.nih.gov/pubmed/12447232