For ME/CFS patients, viral immunities come at a devastating, lifelong cost

Press Release: EurekAlert

Mylagic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling and complex illness. Affected persons often cannot pursue ordinary activities — physical or mental — because of an incapacitating loss of energy and other symptoms, and may find themselves confined to bed or house-bound for years.

Anyone can develop ME/CFS, though it most commonly afflicts people between the ages of 40 and 60; women more often than men. In nearly every case, ME/CFS begins after a sequence of severe environmental exposures, injuries or infections. Until relatively recently, the utter mystery and complexity of ME/CFS persuaded some that it was not a “real” condition. In 2015, the National Academy of Medicine declared ME/CFS to be a serious, chronic, complex and systemic disease.

In a new study, to be published in the May 1, 2020 print edition of https://www.immunohorizons.org/content/4/4/201 ImmunoHorizons, a team of researchers at University of California San Diego School of Medicine and three German universities describe an underlying biological basis for ME/CFS, one that illustrates how efforts by the body to boost immune system protections can come at physiological cost elsewhere.

“These findings are important because they show for the first time that there is an antiviral activity in the serum of patients with ME/CFS that is tightly associated with an activity that fragments the mitochondrial network and decreases cellular energy (ATP) production,” said Robert Naviaux, MD, PhD, professor of medicine, pediatrics and pathology at UC San Diego School of Medicine.

Naviaux is co-senior author of the study with Bhupesh K. Prusty, PhD, a scientist in the Department of Microbiology and Institute for Virology and Immunobiology at Julius Maximilians University in Würzburg, Germany.

“This provides an explanation for the common observation that ME/CFS patients often report a sharp decrease in the number of colds and other viral infections they experience after they developed the disease. Our work also helps us understand the long-known, but poorly understood link of ME/CFS to past infections with Human Herpes Virus-6 (HHV-6) or HHV-7,” said Naviaux.

More than 90 percent of people are exposed to HHV-6 by three years of age. The virus DNA can insert itself into a chromosome and remain latent in just a few cells for years, silently being copied each time the cell divides. For most people, this causes no problem.

“However, we found that exposure to new metabolic or environmental chemical stresses caused cells with an integrated copy of HHV-6 to secrete an activity that warned neighboring cells of the threat,” said Naviaux. “The secreted activity not only protected neighboring and distant cells from new RNA and DNA virus infections, but also fragmented the mitochondrial network and lowered their intracellular ATP reserve capacity. Cells without an integrated copy of HHV-6 did not secrete the antiviral activity.

“Our results show that cellular bioenergetic fatigue and cellular defense are two sides to the same coin in ME/CFS. When energy is used for cellular defense, it is not available for normal cell functions like growth, repair, neuroendocrine and autonomic nervous system functions.”

The findings further illuminate a concept called cell danger response theory, which Naviaux and colleagues have been investigating for years. CDR theory posits that chronic disease is the consequence of the natural healing cycle becoming blocked by disruptions at the metabolic and cellular levels. In this case, persons with ME/CFS obtained protections against certain kinds of infections, but at a cost of fragmenting mitochondrial function. Persistence of fragmented mitochondria and the associated abnormalities in cell signaling block normal healing and recovery, and can lead to a lifetime of illness.

Mitochondria are organelles in cells that break down nutrients to create a fuel called adenosine triphosphate (ATP), the primary energy carrier in all living organisms. ATP provides the energy used to drive many cellular processes, including muscle contractions, nerve impulses and chemical synthesis.

“This paper will be a paradigm shift in our understanding of potential infectious causes behind ME/CFS. Human herpesvirus 6 and HHV-7 have long been thought to play a role in this disease, but there was hardly any causative mechanism known before,” said senior co-author Prusty.

“For the first time, we show that even a few HHV-6 infected or reactivated cells can drive a powerful metabolic and mitochondrial remodeling response that can push even the non-virus containing cells towards a hypometabolic (abnormally low metabolic) state. Hypometabolic cells are resistant to other viral infections and to many environmental stresses, but this comes at the cost of severe symptoms and suffering for patients with ME/CFS.”

###

Co-authors include: Philipp Schreiner, Stephanie Lamer and Andreas Schlosser, Julius-Maximilians University, Germany; Thomas Harrer, University of Erlangen-Nuremberg; and Carmen Scheibenbogen, Charite-Universitatsmedizin Berlin.

RNase L levels in peripheral blood mononuclear cells: 37-kilodalton/83-kilodalton isoform ratio is a potential test for chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a disorder characterized by debilitating fatigue associated with immunological abnormalities. The etiology remains unclear. A low-molecular-mass (37 kDa) isoform of RNase L has been described in peripheral blood mononuclear cell (PBMC) extracts, and the ratio of two isoforms of RNase L (37 kDa/83 kDa) has been proposed as a potential biochemical marker of CFS. In a prospective case-control study, we tested whether the RNase L 37-kDa/83-kDa ratio could discriminate a SFC population.

We compared the ratio of RNase L isoforms in PBMCs from 11 patients with CFS (6 women and 5 men; mean age +/- standard deviation, 43.2 +/- 13.8 years) and PBMCs from 14 healthy well-matched volunteers (10 women and 4 men; age, 39.1 +/- 11.6 years). A ratio of RNase L of 0.4 used as a threshold allowed diagnosis of CFS with high sensitivity (91%; 95% confidence interval [CI], 57 to 99%) and specificity (71%; 95% CI, 41 to 90%). The positive and negative prognostic values were 71% (95% CI, 41 to 90%) and 91% (95% CI, 57 to 99%), respectively.

In the absence of acute infection or chronic inflammation, a high RNase L ratio could distinguish CFS patients from healthy volunteers. Additional large studies and follow-up studies are required to confirm the stability of this high ratio of RNase L isoforms in a CFS group.

Comment in: 37-Kilodalton/83-kilodalton RNase L isoform ratio in peripheral blood mononuclear cells: analytical performance and relevance for chronic fatigue syndrome. [Clin Diagn Lab Immunol. 2005]

 

Source: Tiev KP, Demettre E, Ercolano P, Bastide L, Lebleu B, Cabane J. RNase L levels in peripheral blood mononuclear cells: 37-kilodalton/83-kilodalton isoform ratio is a potential test for chronic fatigue syndrome. Clin Diagn Lab Immunol. 2003 Mar;10(2):315-6. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150526/ (Full article)

 

Antiviral pathway activation in chronic fatigue syndrome and acute infection

Comment on: Antiviral pathway activation in patients with chronic fatigue syndrome and acute infection. [Clin Infect Dis. 2001]

 

SIR—We read the very engaging report by Gow et al. [1] with the utmost interest. However, we feel that this article raises more questions than clear-cut answers regarding the hypothesis that motivated the study—that is, that the previously reported activation of the antiviral pathway in chronic fatigue syndrome (CFS) might be linked to infection rather than to CFS specifically. To verify their hypothesis, Gow and colleagues used PCR to measure the genetic expression of 3 IFN-regulated genes—namely, the latent ribonuclease (RNase L), RNA-regulated protein kinase (PKR), 2,5 synthetase, and the RNase L inhibitor (RLI)—in patients with acute infection (in their study, severe gastroenteritis; group 1), patients with CFS (group 2), and healthy control subjects (group 3).

First, surprisingly enough, although they recognized that acute infection is supposed to induce the expression of the genes selected for their study (see figure 1 of [1]), Gow and colleagues failed to find any significant increase in the expression of 2 major genes (RNase L and 2,5 synthetase) in group 1, as compared with groups 2 and 3; they observed only increased mRNA for PKR and RLI. Although it is recognized that genetic expression of PKR, RNase L, and 2,5 synthetase is under the control of interferon, RLI is definitely not [2]. Upregulation of RLI genetic expression with a normal genetic expression of both 2,5 synthetase and RNase L (although PKR is overexpressed!) during acute infection, as was observed in the study of Gow et al. [1], would indicate not only that RNase L is not activated (normal expression of RNase L and, more importantly, of 2,5 synthetase), but that it is further inhibited by an overexpressed RLI [2]. Such a scenario, if verified, would be in complete disagreement with the current understanding of the IFN pathway [3]. Therefore, we cannot help but wonder how Gow and colleagues reconcile their observations with the acute infection status of study group 1. In our view, this inconsistency severely undermines their conclusions.

You can read the rest of this comment here:  http://cid.oxfordjournals.org/content/34/10/1420.long

 

Source: De Meirleir K, Suhadolnik RJ, Lebleu B, Englebienne P. Antiviral pathway activation in chronic fatigue syndrome and acute infection. Clin Infect Dis. 2002 May 15;34(10):1420-1; author reply 1421-2. http://cid.oxfordjournals.org/content/34/10/1420.long (Full article)

 

Antiviral pathway activation in patients with chronic fatigue syndrome and acute infection

Abstract:

Gene expression of key enzymes in 2 antiviral pathways (ribonuclease latent [RNase L] and RNA-regulated protein kinase [PKR]) was compared in 22 patients with chronic fatigue syndrome (CFS), 10 patients with acute gastroenteritis, and 21 healthy volunteers. Pathway activation in the group of patients with infections differed significantly from that of the other 2 groups, in whom there was no evidence of upregulation. Therefore, assay of activation is unlikely to provide the basis for a diagnostic test for CFS.

Comment in: Antiviral pathway activation in chronic fatigue syndrome and acute infection. [Clin Infect Dis. 2002]

 

Source: Gow JW, Simpson K, Behan PO, Chaudhuri A, McKay IC, Behan WM. Antiviral pathway activation in patients with chronic fatigue syndrome and acute infection. Clin Infect Dis. 2001 Dec 15;33(12):2080-1. Epub 2001 Nov 6. http://cid.oxfordjournals.org/content/33/12/2080.long (Full article)

 

Biochemical evidence for a novel low molecular weight 2-5A-dependent RNase L in chronic fatigue syndrome

Abstract:

Previous studies from this laboratory have demonstrated a statistically significant dysregulation in several key components of the 2′,5′-oligoadenylate (2-5A) synthetase/RNase L and PKR antiviral pathways in chronic fatigue syndrome (CFS) (Suhadolnik et al. Clin Infect Dis 18, S96-104, 1994; Suhadolnik et al. In Vivo 8, 599-604, 1994). Two methodologies have been developed to further examine the upregulated RNase L activity in CFS.

First, photoaffinity labeling of extracts of peripheral blood mononuclear cells (PBMC) with the azido 2-5A photoaffinity probe, [32P]pApAp(8-azidoA), followed by immunoprecipitation with a polyclonal antibody against recombinant, human 80-kDa RNase L and analysis under denaturing conditions. A subset of individuals with CFS was identified with only one 2-5A binding protein at 37 kDa, whereas in extracts of PBMC from a second subset of CFS PBMC and from healthy controls, photolabeled/immunoreactive 2-5A binding proteins were detected at 80, 42, and 37 kDa.

Second, analytic gel permeation HPLC was completed under native conditions. Extracts of healthy control PBMC revealed 2-5A binding and 2-5A-dependent RNase L enzyme activity at 80 and 42 kDa as determined by hydrolysis of poly(U)-3′-[32P]pCp. A subset of CFS PBMC contained 2-5A binding proteins with 2-5A-dependent RNase L enzyme activity at 80, 42, and 30 kDa. However, a second subset of CFS PBMC contained 2-5A binding and 2-5A-dependent RNase L enzyme activity only at 30 kDa. Evidence is provided indicating that the RNase L enzyme dysfunction in CFS is more complex than previously reported.

 

Source: Suhadolnik RJ, Peterson DL, O’Brien K, Cheney PR, Herst CV, Reichenbach NL, Kon N, Horvath SE, Iacono KT, Adelson ME, De Meirleir K, De Becker P,Charubala R, Pfleiderer W. Biochemical evidence for a novel low molecular weight 2-5A-dependent RNase L in chronic fatigue syndrome. J Interferon Cytokine Res. 1997 Jul;17(7):377-85. http://www.ncbi.nlm.nih.gov/pubmed/9243369

 

Changes in the 2-5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome

Abstract:

Latent 2′, 5′-oligoadenylate (2-5A) synthetase activity, bioactive 2-5A and RNase L activity were measured in extracts of peripheral blood mononuclear cells (PMBC) before and during a randomized, multicenter, placebo-controlled, double-blind study of poly(I)-poly(C12U) in individuals with chronic fatigue syndrome (CFS) as defined by the Centers for Disease Control and Prevention. The mean values for bioactive 2-5A and RNase L activity were significantly elevated at baseline compared to controls (p < .0001 and p = .001, respectively). In individuals that presented with elevated RNase L activity at baseline, therapy with poly(I)-poly(C12U) resulted in a significant decrease in both bioactive 2-5A and RNase L activity (p = .09 and p = .005, respectively). Decrease in RNase L activity in individuals treated with poly(I)-poly(C12U) correlated with cognitive improvement (p = .007). Poly(I)-poly(C12U) therapy resulted in a significant decrease in bioactive 2-5A and RNase L activity in agreement with clinical and neuropsychological improvements (Strayer DR, et al., Clin. Infectious Dis. 18:588-595, 1994). The results described show that poly(I)-poly(C12U) is a biologically active drug in CFS.

 

Source: Suhadolnik RJ, Reichenbach NL, Hitzges P, Adelson ME, Peterson DL, Cheney P, Salvato P, Thompson C, Loveless M, Müller WE, et al. Changes in the 2-5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome. In Vivo. 1994 Jul-Aug;8(4):599-604. http://www.ncbi.nlm.nih.gov/pubmed/7893988