Potential Beneficial Effects of Naringin and Naringenin on Long COVID—A Review of the Literature

Abstract:

Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID.
The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants.
This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Source: Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID—A Review of the Literature. Microorganisms. 2024; 12(2):332. https://doi.org/10.3390/microorganisms12020332 https://www.mdpi.com/2076-2607/12/2/332 (Full text)

Improving Quality of Life in Chronic Fatigue Syndrome using Antioxidant Complex Twendee M®.

Abstract:

Chronic fatigue syndrome (CFS) is a disease in which fatigue that interferes with daily life persists for six months or longer. The number of patients with CFS is increasing, as CFS-like symptoms have been reported to occur in the sequelae of both COVID-19 infection and the SARS-CoV-2 vaccine, both of which have become significant issues in recent years. While the pathogenesis mechanism is not yet fully understood, research suggests that oxidative stress (OS) may play a role in the development of CFS.
In this paper, we discuss the antioxidant potential of the antioxidant formulation Twendee M® (TwM) and the results of a questionnaire that monitored changes in symptoms before and after TwM in a total of 23 men and women diagnosed with CFS. TwM is a supplement containing 15 different ingredients, and has a strong antioxidant capacity that cannot be achieved with a single antioxidant ingredient.
The results of the questionnaire showed that TwM significantly improved all of the major symptoms of CFS, including fatigue, muscle pain, joint pain, sleep disturbance, decreased memory and concentration, and headache. TwM was shown to alleviate various symptoms of CFS and improve quality of life.
Source: You, F.; Harakawa, Y.; Yoshikawa, T.; Inufusa, H. Improving Quality of Life in Chronic Fatigue Syndrome using Antioxidant Complex Twendee M®.. Preprints 2024, 2024020373. https://doi.org/10.20944/preprints202402.0373.v1 https://www.preprints.org/manuscript/202402.0373/v1 (Full study available as PDF file)

Advancing Research and Treatment: An Overview of Clinical Trials in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Future Perspectives

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, debilitating, and multi-faceted illness. Heterogenous onset and clinical presentation with additional comorbidities make it difficult to diagnose, characterize, and successfully treat. Current treatment guidelines focus on symptom management, but with no clear target or causative mechanism, remission rates are low, and fewer than 5% of patients return to their pre-morbid activity levels. Therefore, there is an urgent need to undertake robust clinical trials to identify effective treatments.
This review synthesizes insights from clinical trials exploring pharmacological interventions and dietary supplements targeting immunological, metabolic, gastrointestinal, neurological, and neuroendocrine dysfunction in ME/CFS patients which require further exploration. Additionally, the trialling of alternative interventions in ME/CFS based on reported efficacy in the treatment of illnesses with overlapping symptomology is also discussed. Finally, we provide important considerations and make recommendations, focusing on outcome measures, to ensure the execution of future high-quality clinical trials to establish clinical efficacy of evidence-based interventions that are needed for adoption in clinical practice.
Source: Seton KA, Espejo-Oltra JA, Giménez-Orenga K, Haagmans R, Ramadan DJ, Mehlsen J on behalf of the European ME Research Group for Early Career Researchers (Young EMERG). Advancing Research and Treatment: An Overview of Clinical Trials in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Future Perspectives. Journal of Clinical Medicine. 2024; 13(2):325. https://doi.org/10.3390/jcm13020325 https://www.mdpi.com/2077-0383/13/2/325 (Full text)

Clinical Rationale for Dietary Lutein Supplementation in Post COVID-19 and mRNA Vaccine Injury Syndromes

Abstract:

Lutein, a plant-derived xanthophyl-carotenoid, is an exceptional antioxidant and anti-inflammatory constituent found in food. Elevated concentrations of lutein found in human blood and plasma, due to high dietary intake, are beneficial against eye disease and improve cardiometabolic health.

Lutein plays an important protective role against the development of neurological disorders, including Alzheimer’s disease (AD), multiple sclerosis (MS) and Parkinson’s disease (PD). It has also been shown to be beneficial for liver, kidney and respiratory health. Lutein, acting as a very strong antioxidant, can alleviate oxidative stress and downgrade reactive oxygen species (ROS). Oxidative stress is one of the key pathogenic mechanisms in post-COVID and mRNA vaccine injury syndromes.

Recent in silico studies suggest that lutein and other naturally derived antioxidants, by docking at the site where the SARS-CoV-2 spike protein (SP) binds to the angiotensin enzyme type 2 (ACE2) receptor, may neutralize the SP-ACE2 interactions. Lutein can be added to a detoxification regimen to aid in clearing Spike protein and relieving symptoms.

In agreement with Hippocrates’ dictum to “Let food be thy medicine,” this review establishes dietary lutein as a valuable therapy in the treatment of post-COVID syndrome, mRNA vaccine injury syndromes, and a wide range of other chronic illnesses.

Source: Kyriakopoulos, A.M.; Nigh, G.; McCullough, P.A.; Seneff, S. Clinical Rationale for Dietary Lutein Supplementation in Post COVID-19 and mRNA Vaccine Injury Syndromes. Preprints 2023, 2023091385. https://doi.org/10.20944/preprints202309.1385.v1 https://www.preprints.org/manuscript/202309.1385/v1 https://www.preprints.org/manuscript/202309.1385/v1 (Full text available as PDF file)

The global challenges of the long COVID-19

Abstract:

COVID-19 may lead to a perseverance of symptoms after recovery from the disease, a condition known as long COVID, characterized by continual cognitive, somatic and behavioral symptoms. SARS-CoV-2 infection triggers different molecular to tissue level events, given by the inherent features of each patient. The potential pathological changes which determine the array of symptoms are arduous to anticipate.

There is an increasing interest to develop treatment strategies for survivors who experience a long COVID. In this respect, considering the anti-inflammatory, anti-oxidative and cytoprotective effects of melatonin (MEL) on viral infections, its potential links with COVID-19 should be researched. Several studies suggest that administration of MEL may prevent clinical deterioration and even death in patients with acute and long COVID-19.

This paper briefly reviews the current status of knowledge of the pathogenic, clinical, and therapeutic features of Long COVID-19 and forthcoming directions for research and implications for the management and therapy of the disease are analyzed.

Source: Leonor Chacin-Bonilla. The global challenges of the long COVID-19. Journal of Clinical Images and Medical Case Reports. ISSN 2766-7820 https://jcimcr.org/pdfs/JCIMCR-v4-2512.pdf (Full text)

Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Plasmalogens (Pls) are lipids containing a vinyl-ether bond in their glycerol backbone
  • Pls have antioxidant properties and are important for curved membrane assemblies
  • Post-COVID-19 symptoms are highly prevalent and share several features with ME/CFS
  • Pls depletion is a shared biological hallmark of ME/CFS and acute COVID-19 syndrome
  • Pls replacement is a promising tool against neuroinflammation in these two conditions

Abstract:

After five waves of COVID-19 outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties (“brain fog”), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions.

Of great interest, recent evidence revealed a significant reduction of plasmalogens contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms.

Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.

Source: Chaves AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull. 2023 Jul 7:110702. doi: 10.1016/j.brainresbull.2023.110702. Epub ahead of print. PMID: 37423295. https://www.sciencedirect.com/science/article/pii/S0361923023001272?via%3Dihub (Full text)

Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy

Abstract:

Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID.
Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A–C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity).
This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection.
To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Source: Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics. 2023; 15(5):1562. https://doi.org/10.3390/pharmaceutics15051562 https://www.mdpi.com/1999-4923/15/5/1562 (Full text)

Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

OBJECTIVES/GOALS: Strong evidence has implicated oxidative stress (OS) as a disease mechanism in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The study aim was to assess whether a C>T single nucleotide polymorphism (SNP) (rs1800668), which reduces the activity of glutathione peroxidase 1 (GPX1), is associated with brain OS in patients with ME/CFS.

METHODS/STUDY POPULATION: Study population: The study enrolled 20 patients with ME/CFS diagnosed according to Canadian Consensus Criteria, and 11 healthy control (HC) subjects. Genotyping: DNA was extracted from whole blood samples, amplified by PCR, and purified. Sanger sequencing was used for genotyping. 1H MRS: Proton magnetic resonance spectroscopy (1H MRS) was used to measure levels of glutathione (GSH) a primary tissue antioxidant and OS marker in a 3x3x2 cm3 occipital cortex (OCC) voxel. GSH spectra were recorded in 15 minutes with the standard J-editing technique. The resulting GSH peak area was normalized to tissue water level in the voxel. Statistical Analysis: T-tests were used to compare OCC GSH levels between ME/CFS and HC groups, and between the study’s genotype groups (group 1: CC, group 2: combined TC and TT).

RESULTS/ANTICIPATED RESULTS: Clinical characteristics: ME/CFS and HC groups were comparable on age and BMI but not on sex (p = 0.038). Genotype frequencies: Genotype frequencies in the ME/CFS group were 0.55 (CC), 0.25 (TC) and 0.2 (TT); and 0.636 (CC), 0.364 (TC), and 0 (TT) in the HC group. GSH levels: There was a trend-level lower mean OCC GSH in ME/CFS than in HC (0.0015 vs 0.0017; p = 0.076). GSH levels by genotype group interaction: Within the ME/CFS group but not in the combined ME/CFS and HC group or HC group alone, GSH levels were lower in the TC and TT genotypes than in CC genotypes (0.00143 vs 0.00164; p = 0.018).

DISCUSSION/SIGNIFICANCE: This study found that the presence of a C>T SNP in GPX1 is associated with lower mean GSH levels and, hence, brain oxidative stress, in ME/CFS patients. If validated in a larger cohort, this finding may support targeted antioxidant therapy based on their genotype as a potentially effective treatment for patients with ME/CFS.

Source: Hampilos, N., Germain, A., Mao, X., Hanson, M., & Shungu, D. (2023). 474 Exploring the Genetic Contribution to Oxidative Stress in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical and Translational Science, 7(S1), 137-138. doi:10.1017/cts.2023.488. DOI: https://doi.org/10.1017/cts.2023.488

A Review of Possible Supplements to Relieve the Symptoms of Fatigue after COVID-19

Abstract:

Background: The highly infectious coronavirus has become a global pandemic; the effective medication is yet to be developed. The health care system was strained; millions of people have been suffered from infection and complications. Post COVID-19 fatigue is a dominant characteristic of coronavirus infection. It affects general state of health, muscle strength, sleeping quality, mental health, and life quality. This paper is emphasizing and summarizing the potential beneficial supplementations of post COVID-19 fatigue symptoms.

Methods: The knowledge gained from PubMed and from the National Library of Medicine. Clinical studies and systematic review articles were collected in this topic.

Results: Herein, we discuss the possible therapeutic supplementations with anti-inflammatory, immunomodulatory and antioxidant effect. Vitamin complexes, trace elements, antioxidants, coenzymes, probiotics, essential fatty acids; one and creatine as amino acid derivatives have been appeared to be effective in relieving post COVID-19 fatigue symptoms.

Conclusions: Based on the data, these nutrients and supplements might be important to alleviate the post COVID-19 fatigue symptoms and they could be considered as a supportive therapy

Source: Boglárka Bernadett Tisza, Gyöngyi Iván, Viola Keczeli, Melinda Kóró, Patricia Szántóri, Zsófia Gyócsiné Varga, Henriett Müller, Olivia Pribéli, Zoltán Szabó, Zsófia Verzár, Monika Sélleyné Gyuró, Andrea Gubicskóné Kisbendek and Tímea Stromájer-Rácz. A Review of Possible Supplements to Relieve the Symptoms of Fatigue after COVID-19.  J Med Public Health. 2023;4(2):JMPH-04-1062. https://www.medtextpublications.com/open-access/a-review-of-possible-supplements-to-relieve-the-symptoms-of-1309.pdf (Full text)

Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome

Abstract:

Long-term neurological complications, persisting in patients who cannot fully recover several months after severe SARS-CoV-2 coronavirus infection, are referred to as neurological sequelae of the long COVID syndrome. Among the numerous clinical post-acute COVID-19 symptoms, neurological and psychiatric manifestations comprise prolonged fatigue, “brain fog”, memory deficits, headache, ageusia, anosmia, myalgias, cognitive impairments, anxiety, and depression lasting several months.
Considering that neurons are highly vulnerable to inflammatory and oxidative stress damages following the overproduction of reactive oxygen species (ROS), neuroinflammation and oxidative stress have been suggested to dominate the pathophysiological mechanisms of the long COVID syndrome. It is emphasized that mitochondrial dysfunction and oxidative stress damages are crucial for the pathogenesis of neurodegenerative disorders. Importantly, antioxidant therapies have the potential to slow down and prevent disease progression.
However, many antioxidant compounds display low bioavailability, instability, and transport to targeted tissues, limiting their clinical applications. Various nanocarrier types, e.g., liposomes, cubosomes, solid lipid nanoparticles, micelles, dendrimers, carbon-based nanostructures, nanoceria, and other inorganic nanoparticles, can be employed to enhance antioxidant bioavailability.
Here, we highlight the potential of phytochemical antioxidants and other neuroprotective agents (curcumin, quercetin, vitamins C, E and D, melatonin, rosmarinic acid, N-acetylcysteine, and Ginkgo Biloba derivatives) in therapeutic strategies for neuroregeneration. A particular focus is given to the beneficial role of nanoparticle-mediated drug-delivery systems in addressing the challenges of antioxidants for managing and preventing neurological disorders as factors of long COVID sequelae.
Source: Akanchise T, Angelova A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants. 2023; 12(2):393. https://doi.org/10.3390/antiox12020393 https://www.mdpi.com/2076-3921/12/2/393 (Full text)