Abstract:
Of those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ~ 10% develop the chronic post-viral debilitating condition, Long COVID (LC). Although LC is a heterogeneous condition, about half of cases have a typical post-viral fatigue condition with onset and symptoms that are very similar to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). A key question is whether these conditions are closely related.
ME/CFS is a post-stressor fatigue condition that arises from multiple triggers. To investigate the pathophysiology of LC, a pilot study of patients and healthy controls has used quantitative proteomics to discover changes in peripheral blood mononuclear cell (PBMC) proteins. A principal component analysis separated all Long COVID patients from healthy controls.
Analysis of 3131 proteins identified 162 proteins differentially regulated, of which 37 were related to immune functions, and 21 to mitochondrial functions. Markov cluster analysis identified clusters involved in immune system processes, and two aspects of gene expression-spliceosome and transcription. These results were compared with an earlier dataset of 346 differentially regulated proteins in PBMC’s from ME/CFS patients analysed by the same methodology.
There were overlapping protein clusters and enriched molecular pathways particularly in immune functions, suggesting the two conditions have similar immune pathophysiology as a prominent feature, and mitochondrial functions involved in energy production were affected in both conditions.
Source: Katie Peppercorn, Christina D. Edgar, Torsten Kleffmann, Warren. P Tate. Immune cell proteomes of Long COVID patients have functional changes similar to those in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Research Square preprint https://doi.org/10.21203/rs.3.rs-3335919/v1 https://www.researchsquare.com/article/rs-3335919/v1 (Full text) https://www.nature.com/articles/s41598-023-49402-9 (Final full text)