Clinical characteristics of patients with unexplainable hypothalamic disorder diagnosed by the corticotropin-releasing hormone challenge test: a retrospective study

Abstract

Background: The corticotropin-releasing hormone (CRH) challenge test can distinguish the disorders of the hypothalamus from those of the pituitary. However, the pathophysiology of hypothalamic disorder (HD) has not been fully understood. This study aimed to elucidate the clinical characteristics of patients with unexplainable HD, diagnosed by the CRH challenge test.

Methods: We retrospectively reviewed patients who underwent the CRH challenge test. Patients were categorized into four groups as follows: patients with peak serum cortisol ≥18 μg/dL were assigned to the normal response (NR) group (n = 18), among patients with peak serum cortisol < 18 μg/dL and peak adrenocorticotropic hormone (ACTH) increase ≥two-fold, patients without obvious background pathology were assigned to the unexplainable-HD group (n = 18), whereas patients with obvious background pathology were assigned to the explainable-HD group (n = 38), and patients with peak serum cortisol < 18 μg/dL and peak ACTH increase <two-fold were assigned to the pituitary disorder (PD) group (n = 15). Inter-group comparisons were performed based on clinical characteristics.

Results: In the CRH challenge test, the peak plasma ACTH levels were significantly lower in the unexplainable-HD group than in the NR group, despite more than two-fold increase compared to basal levels. The increase in serum cortisol was significantly higher in the unexplainable-HD group than in the explainable-HD and PD groups. Although patients in the unexplainable-HD group showed a clear ACTH response in the insulin tolerance test, some patients had peak serum cortisol levels of < 18 μg/dL. Furthermore, attenuated diurnal variations and low normal levels of urinary free cortisol were observed. Most patients in the unexplainable-HD group were young women with chronic fatigue. However, supplementation with oral hydrocortisone at physiological doses reduced fatigue only in some patients.

Conclusions: Patients with unexplainable HD diagnosed by the CRH challenge test had hypothalamic-pituitary-adrenal (HPA) axis dysfunction and some patients had mild central adrenal insufficiency. Hydrocortisone supplementation reduced fatigue only in some patients, suggesting that HPA axis dysfunction may be a physiological adaptation. Further investigation of these patients may help elucidate the pathophysiology of myalgic encephalitis/chronic fatigue syndrome.

Source: Hataya Y, Okubo M, Hakata T, Fujimoto K, Iwakura T, Matsuoka N. Clinical characteristics of patients with unexplainable hypothalamic disorder diagnosed by the corticotropin-releasing hormone challenge test: a retrospective study. BMC Endocr Disord. 2022 Dec 9;22(1):312. doi: 10.1186/s12902-022-01237-7. PMID: 36494805; PMCID: PMC9733005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733005/ (Full text)

Is there a role for the adrenal glands in long COVID?

Introduction:

After the acute phase of SARS-CoV-2 infection, roughly 20% of patients report one or more complications, which are particularly apparent during mental or physical stress. These complications include extreme chronic fatigue, shortness of breath, sleep abnormalities, headache, brain fog, joint pains, nausea, cough and abdominal pain. When symptoms persist for more than four weeks after initial infection and cannot be attributed to other known diseases, they are described as long COVID. When comparing the clinical presentation of long COVID and chronic adrenal insufficiency, overlap between the conditions can be seen, suggesting that long COVID might be related to some form of adrenal dysfunction. Here we discuss the role of the adrenal glands in long COVID.

Read the rest of this article HERE.

Source: Kanczkowski W, Beuschlein F, Bornstein SR. Is there a role for the adrenal glands in long COVID? Nat Rev Endocrinol. 2022 May 30:1–2. doi: 10.1038/s41574-022-00700-8. Epub ahead of print. PMID: 35637413; PMCID: PMC9150041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150041/ (Full text)

Disorder of adrenal gland function in chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is defined as constellation of the prolonged fatigue and several somatic symptoms, in the absence of organic or severe psychiatric disease. However, this is an operational definition and conclusive biomedical explanation remains elusive. Similarities between the signs and symptoms of CFS and adrenal insufficiency prompted the research of the hypothalamo-pituitary-adrenal axis (HPA) derangement in the pathogenesis of the CFS.

Early studies showed mild glucocorticoid deficiency, probably of central origin that was compensated by enhanced adrenal sensitivity to ACTH. Further studies showed reduced ACTH response to vasopressin infusion. The response to CRH was either blunted or unchanged. Cortisol response to insulin induced hypoglycaemia was same as in the control subjects while ACTH response was reported to be same or enhanced. However, results of direct stimulation of the adrenal cortex using ACTH were conflicting.

Cortisol and DHEA responses were found to be the same or reduced compared to control subjects. Scott et al found that maximal cortisol increment from baseline is significantly lower in CFS subjects. The same group also found small adrenal glands in some CFS subjects. These varied and inconsistent results could be explained by the heterogeneous study population due to multifactorial causes of the disease and by methodological differences. The aim of our study was to assess cortisol response to low dose (1 microgram) ACTH using previously validated methodology.

We compared cortisol response in the CFS subjects with the response in control and in subjects with suppressed HPA axis due to prolonged corticosteroid use. Cortisol responses were analysed in three subject groups: control (C), secondary adrenal insufficiency (AI), and in CFS. The C group consisted of 39 subjects, AI group of 22, and CFS group of nine subjects. Subject data are presented in table 1.

Low dose ACTH test was started at 0800 h with the i.v. injection of 1 microgram ACTH (Galenika, Belgrade, Serbia). Blood samples for cortisol determination were taken from the i.v. cannula at 0, 15, 30, and 60 min. Data are presented as mean +/- standard error (SE). Statistical analysis was done using ANOVA with the Games-Howell post-hoc test to determine group differences. ACTH dose per kg or per square meter of body surface was not different between the groups.

Baseline cortisol was not different between the groups. However, cortisol concentrations after 15 and 30 minutes were significantly higher in the C group than in the AI group. Cortisol concentration in the CFS group was not significantly different from any other group (Graph 1). Cortisol increment at 15 and 30 minutes from basal value was significantly higher in C group than in other two groups. However, there was no significant difference in cortisol increment between the AI and CFS groups at any time of the test.

On the contrary, maximal cortisol increment was not different between CFS and other two groups, although it was significantly higher in C group than in the AI group. Maximal cortisol response to the ACTH stimulation and area under the cortisol response curve was significantly larger in C group compared to AI group, but there was no difference between CFS and other two groups.

Several previous studies assessed cortisol response to ACTH stimulation. Hudson and Cleare analysed cortisol response to 1 microgram ACTH in CFS and control subjects. They compared maximum cortisol attained during the test, maximum cortisol increment, and area under the cortisol response curve. There was no difference between the groups in any of the analysed parameters. However, authors commented that responses were generally low. On the contrary Scott et al found that cortisol increment at 30 min is significantly lower in the CFS than in the control group. Taking into account our data it seems that the differences found in previous studies papers are caused by the methodological differences.

We have shown that cortisol increment at 15 and 30 min is significantly lower in CFS group than in C group. Nevertheless, maximum cortisol attained during the test, maximum cortisol increment, and area under the cortisol response curve were not different between the C and CFS groups. This is in agreement with our previous findings that cortisol increment at 15 minutes has the best diagnostic value of all parameters obtained during of low dose ACTH test. However, there was no difference between CFS and AI group in any of the parameters, although AI group had significantly lower cortisol concentrations at 15 and 30 minutes, maximal cortisol response, area under the cortisol curve, maximal cortisol increment, and maximal cortisol change velocity than C group. Consequently, reduced adrenal responsiveness to ACTH exists in CFS.

In conclusion, we find that regarding the adrenal response to ACTH stimulation CFS subjects present heterogeneous group. In some subjects cortisol response is preserved, while in the others it is similar to one found in secondary adrenal insufficiency.

 

Source: Zarković M, Pavlović M, Pokrajac-Simeunović A, Cirić J, Beleslin B, Penezić Z, Ognjanović S, Savić S, Poluga J, Trbojević B, Drezgić M. Disorder of adrenal gland function in chronic fatigue syndrome. Srp Arh Celok Lek. 2003 Sep-Oct;131(9-10):370-4. [Article in Serbian] http://www.ncbi.nlm.nih.gov/pubmed/15058215 (Abstract) http://srpskiarhiv.rs/global/pdf/articles-2003/septembar-oktobar/Adrenalcortexfunctionimpairmentinchronicfatiguesyndrome.pdf (Full article)

 

 

Assessment of cortisol response with low-dose and high-dose ACTH in patients with chronic fatigue syndrome and healthy comparison subjects

Abstract:

A reduced secretion of cortisol has been proposed as a possible explanation of the symptoms in chronic fatigue syndrome. However, the evidence of hypocortisolism in chronic fatigue syndrome is conflicting.

In order to simultaneously assess possible alterations in adrenocortical sensitivity and secretory adrenal reserve, the authors administered both low-dose and high-dose ACTH to a group of 18 chronic fatigue syndrome patients and 18 age- and gender-matched healthy comparison subjects.

No response differences for salivary and plasma cortisol were detectable after administration of either low-dose or high-dose ACTH, indicating that primary adrenal insufficiency is unlikely to play a significant role in the etiology of chronic fatigue syndrome.

 

Source: Gaab J, Hüster D, Peisen R, Engert V, Heitz V, Schad T, Schürmeyer T, Ehlert U. Assessment of cortisol response with low-dose and high-dose ACTH in patients with chronic fatigue syndrome and healthy comparison subjects. Psychosomatics. 2003 Mar-Apr;44(2):113-9. http://www.ncbi.nlm.nih.gov/pubmed/12618533

 

Dehydroepiandrosterone (DHEA) response to i.v. ACTH in patients with chronic fatigue syndrome

Abstract:

Previous studies have demonstrated concentrating neuroendocrinological disturbances in chronic fatigue syndrome (CFS) patients, concentrating in particular on low cortisol levels and a hypothalamic deficiency.

In order to investigate the dynamic response of the adrenal glands, we measured dehydroepiandrosterone (DHEA) in serum after adreno-corticotropic hormone (ACTH) stimulation during 60 minutes in 22 CFS-patients and 14 healthy controls.

We found normal basal DHEA levels, but a blunted serum DHEA response curve to i.v. ACTH injection. This observation adds to the large amount of evidence of endocrinological abnormalities in CFS. Relative glucocorticoid deficiency might contribute to the overall clinical picture in CFS, and could explain some of the immunological disturbances observed in this syndrome.

Comment in: Overlap of chronic fatigue syndrome with primary adrenocortical insufficiency. [Horm Metab Res. 1999]

 

Source: De Becker P, De Meirleir K, Joos E, Campine I, Van Steenberge E, Smitz J, Velkeniers B. Dehydroepiandrosterone (DHEA) response to i.v. ACTH in patients with chronic fatigue syndrome. Horm Metab Res. 1999 Jan;31(1):18-21. http://www.ncbi.nlm.nih.gov/pubmed/10077344