Intrinsic Functional Hypoconnectivity in Core Neurocognitive Networks Suggests Central Nervous System Pathology in Patients with Myalgic Encephalomyelitis: A Pilot Study

Abstract:

Exact low resolution electromagnetic tomography (eLORETA) was recorded from nineteen EEG channels in nine patients with myalgic encephalomyelitis (ME) and 9 healthy controls to assess current source density and functional connectivity, a physiological measure of similarity between pairs of distributed regions of interest, between groups. Current source density and functional connectivity were measured using eLORETA software.

We found significantly decreased eLORETA source analysis oscillations in the occipital, parietal, posterior cingulate, and posterior temporal lobes in Alpha and Alpha-2. For connectivity analysis, we assessed functional connectivity within Menon triple network model of neuropathology.

We found support for all three networks of the triple network model, namely the central executive network (CEN), salience network (SN), and the default mode network (DMN) indicating hypo-connectivity in the Delta, Alpha, and Alpha-2 frequency bands in patients with ME compared to controls.

In addition to the current source density resting state dysfunction in the occipital, parietal, posterior temporal and posterior cingulate, the disrupted connectivity of the CEN, SN, and DMN appears to be involved in cognitive impairment for patients with ME. This research suggests that disruptions in these regions and networks could be a neurobiological feature of the disorder, representing underlying neural dysfunction.

 

Source: Zinn ML, Zinn MA, Jason LA. Intrinsic Functional Hypoconnectivity in Core Neurocognitive Networks Suggests Central Nervous System Pathology in Patients with Myalgic Encephalomyelitis: A Pilot Study. Appl Psychophysiol Biofeedback. 2016 Sep;41(3):283-300. doi: 10.1007/s10484-016-9331-3. https://www.ncbi.nlm.nih.gov/pubmed/26869373

 

The role of the hippocampus in the pathogenesis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a severe acquired illness characterized by a profound sensation of fatigue, not ameliorated by rest and resulting in a substantial decrease in the amount and quality of occupational, social and recreational activities.

Despite intense research, the aetiology and pathogenesis of ME/CFS is still unknown and no conclusive biological markers have been found. As a consequence, an accepted curative treatment is still lacking and rehabilitation programmes are not very effective, as few patients recover. Increased knowledge of the mechanisms leading to the emergence and maintenance of the illness is called for.

In this study, I will put forth an alternative hypothesis to explain some of the pathologies associated with ME/CFS, by concentrating on one of the major strategic organs of the brain, the hippocampus. I will show that the ME/CFS triggering factors also impact the hippocampus, leading to neurocognitive deficits and disturbances in the regulation of the stress system and pain perception. These deficits lead to a substantial decrease in activity and to sleep disorders, which, in turn, impact the hippocampus and initiate a vicious circle of increased disability.

Copyright © 2015 Elsevier Ltd. All rights reserved.

 

Source: Saury JM. The role of the hippocampus in the pathogenesis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Med Hypotheses. 2016 Jan;86:30-8. doi: 10.1016/j.mehy.2015.11.024. Epub 2015 Nov 27. https://www.ncbi.nlm.nih.gov/pubmed/26804593

 

Reduced gait automaticity in female patients with chronic fatigue syndrome: Case-control study

Abstract:

Patients with chronic fatigue syndrome (CFS) report difficulties walking for a prolonged period of time. This study compares gait automaticity between women with CFS and nondisabled controls. The “stops walking with eyes closed with secondary cognitive task” test is based on the classic “stops walking while talking” test but compares walking with eyes closed while performing a secondary cognitive task in a female CFS population (n = 34) and in female nondisabled controls (n = 38).

When initiating gate, 23.5% of patients with CFS looked toward the ground compared with only 2.6% of nondisabled controls. After 7 m, subjects were asked to close their eyes, and after another 7 m, they were asked, “How much is 100 minus 7?” Of the patients with CFS, 55.9% stopped walking compared with 5.3% of nondisabled controls. Less automated walking was observed in patients with CFS than in nondisabled controls (p < 0.001). The test-retest reliability is moderate for global stopping. This simple test observed reduced gait automaticity in patients with CFS for the first time. Dual tasking could be helpful to address the functional limitations found in this particular study.

 

Source: Eyskens JB, Nijs J, Wouters K, Moorkens G. Reduced gait automaticity in female patients with chronic fatigue syndrome: Case-control study. J Rehabil Res Dev. 2015;52(7):805-14. doi: 10.1682/JRRD.2014.11.0293. http://www.rehab.research.va.gov/jour/2015/527/JRRD-2014-11-0293.html (Full article)

 

Abnormal resting state functional connectivity in patients with chronic fatigue syndrome: an arterial spin-labeling fMRI study

Abstract:

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by severe fatigue and neurocognitive dysfunction. Recent work from our laboratory and others utilizing arterial spin labeling functional magnetic resonance imaging (ASL) indicated that ME/CFS patients have lower resting state regional cerebral blood flow (rCBF) in several brain areas associated with memory, cognitive, affective, and motor function. This hypoperfusion may underlie ME/CFS pathogenesis and may result in alterations of functional relationships between brain regions. The current report used ASL to compare functional connectivity of regions implicated in ME/CFS between patients and healthy controls (HC).

METHODS: Participants were 17 ME/CFS patients (Mage=48.88years, SD=12) fulfilling the 1994 CDC criteria and 17 age/sex matched HC (Mage=49.82years, SD=11.32). All participants underwent T1-weighted structural MRI as well as a 6-min pseudo-continuous arterial spin labeling (pCASL) sequence, which quantifies CBF by magnetically labeling blood as it enters the brain. Imaging data were preprocessed using SPM 12 and ASL tbx, and seed-to-voxel functional connectivity analysis was conducted using the CONN toolbox. All effects noted below are significant at p<0.05 with cluster-wise FDR correction for multiple comparisons.

RESULTS: ME/CFS patients demonstrated greater functional connectivity relative to HC in bilateral superior frontal gyrus, ACC, precuneus, and right angular gyrus to regions including precuneus, right postcentral gyrus, supplementary motor area, posterior cingulate gyrus, and thalamus. In contrast, HC patients had greater functional connectivity than ME/CFS in ACC, left parahippocampal gyrus, and bilateral pallidum to regions including right insula, right precentral gyrus, and hippocampus. Connectivity of the left parahippocampal gyrus correlated strongly with overall clinical fatigue of ME/CFS patients.

CONCLUSION: This is the first ASL based connectivity analysis of patients with ME/CFS. Our results demonstrate altered functional connectivity of several regions associated with cognitive, affective, memory, and higher cognitive function in ME/CFS patients. Connectivity to memory related brain areas (parahippocampal gyrus) was correlated with clinical fatigue ratings, providing supporting evidence that brain network abnormalities may contribute to ME/CFS pathogenesis.

Copyright © 2015 Elsevier Inc. All rights reserved.

 

Source: Boissoneault J, Letzen J, Lai S, O’Shea A, Craggs J, Robinson ME, Staud R. Abnormal resting state functional connectivity in patients with chronic fatigue syndrome: an arterial spin-labeling fMRI study. Magn Reson Imaging. 2016 May;34(4):603-8. doi: 10.1016/j.mri.2015.12.008. Epub 2015 Dec 18. https://www.ncbi.nlm.nih.gov/pubmed/26708036

 

Altered resting-state functional connectivity in women with chronic fatigue syndrome

Abstract:

The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients.

Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan.

Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls.

The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls.

The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome.

Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

 

Source: Kim BH, Namkoong K, Kim JJ, Lee S, Yoon KJ, Choi M, Jung YC. Altered resting-state functional connectivity in women with chronic fatigue syndrome. Psychiatry Res. 2015 Dec 30;234(3):292-7. doi: 10.1016/j.pscychresns.2015.10.014. Epub 2015 Oct 23. https://www.ncbi.nlm.nih.gov/pubmed/26602611

 

Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

Abstract:

The ability to divide one’s attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging.

Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension.

In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively.

Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

 

Source: Mizuno K, Tanaka M, Tanabe HC, Joudoi T, Kawatani J, Shigihara Y, Tomoda A, Miike T, Imai-Matsumura K, Sadato N, Watanabe Y. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome. Neuroimage Clin. 2015 Sep 10;9:355-68. doi: 10.1016/j.nicl.2015.09.001. ECollection 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589845/ (Full article)

 

Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses

Abstract:

Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS).

The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN).

The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased.

For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue.

Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.

 

Source: Gay CW, Robinson ME, Lai S, O’Shea A, Craggs JG, Price DD, Staud R. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses. Brain Connect. 2016 Feb;6(1):48-56. doi: 10.1089/brain.2015.0366. Epub 2015 Nov 10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744887/ (Full article)

 

Variability of postural orthostatic tachycardia in patients with myalgic encephalomyelitis and orthostatic intolerance

Abstract:

Central nervous system dysfunction with myalgic encephalomyelitis (ME) has been suggested as the main cause of chronic fatigue syndrome. Fluctuation of the symptom severity and hierarchy is a characteristic feature in ME patients. The characteristics of the sympathetic activation may differ between the “good days” and “bad days” in them.

Twenty-four ME patients with orthostatic intolerance underwent a conventional 10-min active standing test and echocardiography both on a “good day” and a “bad day”, defined according to the severity of their symptoms. The mean heart rate at rest was significantly higher on the “bad days” than on the “good days”. During the standing test on a “bad day”, 5 patients (21 %) failed to maintain an upright posture for 10 min, whereas on a “good day” all the 24 patients maintained it.

Postural orthostatic tachycardia (POT) (increase in heart rate ≥30 beats/min) or severe POT (heart rate ≥120 beats/min) was observed on the “bad days” in 10 patients (43 %) who did not suffer from the severe tachycardia on the “good days”, suggesting the exaggerated sympathetic nervous activation.

In contrast, POT did not occur or severe POT was attenuated on the “bad days” in 5 patients (21 %) who developed POT or severe POT on the “good days”, suggesting the impaired sympathetic activation. Echocardiography revealed significantly lower mean values of both the left ventricular end-diastolic diameter and stroke volume index on the “bad days” compared with the “good days”.

In conclusion, in ME patients with orthostatic intolerance, the exaggerated activation of the sympathetic nervous system while standing appears to switch to the impaired sympathetic activation after the system is loaded with the additional accentuated stimuli associated with the preload reduction.

 

Source: Miwa K. Variability of postural orthostatic tachycardia in patients with myalgic encephalomyelitis and orthostatic intolerance. Heart Vessels. 2016 Sep;31(9):1522-8. doi: 10.1007/s00380-015-0744-3. Epub 2015 Sep 15. https://www.ncbi.nlm.nih.gov/pubmed/26374335

 

Gray matter volumes in patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterized by profound fatigue with uncertain pathologic mechanism. Neuroimage may be an important key to unveil the central nervous system (CNS) mechanism in CFS. Although most of the studies found gray matter (GM) volumes reduced in some brain regions in CFS, there are many factors that could affect GM volumes in CFS, including chronic pain, stress, psychiatric disorder, physical activity, and insomnia, which may bias the results. In this paper, through reviewing recent literatures, we discussed these interferential factors, which overlap with the symptoms of CFS.

 

Source: Tang LW, Zheng H, Chen L, Zhou SY, Huang WJ, Li Y, Wu X. Gray matter volumes in patients with chronic fatigue syndrome. Evid Based Complement Alternat Med. 2015;2015:380615. doi: 10.1155/2015/380615. Epub 2015 Feb 22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352504/ (Full article)

 

Evidence in chronic fatigue syndrome for severity-dependent upregulation of prefrontal myelination that is independent of anxiety and depression

Abstract:

White matter (WM) involvement in chronic fatigue syndrome (CFS) was assessed using voxel-based regressions of brain MRI against CFS severity scores and CFS duration in 25 subjects with CFS and 25 normal controls (NCs). As well as voxel-based morphometry, a novel voxel-based quantitative analysis of T1 – and T2 -weighted spin-echo (T1w and T2w) MRI signal level was performed. Severity scores included the Bell CFS disability scale and scores based on the 10 most common CFS symptoms. Hospital Anxiety and Depression Scale (HADS) depression and anxiety scores were included as nuisance covariates.

By relaxing the threshold for cluster formation, we showed that the T1w signal is elevated with increasing CFS severity in the ventrolateral thalamus, internal capsule and prefrontal WM. Earlier reports of WM volume losses and neuroinflammation in the midbrain, together with the upregulated prefrontal myelination suggested here, are consistent with the midbrain changes being associated with impaired nerve conduction which stimulates a plastic response on the cortical side of the thalamic relay in the same circuits.

The T2w signal versus CFS duration and comparison of T2w signal in the CFS group with the NC group revealed changes in the right middle temporal lobe WM, where impaired communication can affect cognitive function. Adjustment for depression markedly strengthened cluster statistics and increased cluster size in both T1w severity regressions, but adjustment for anxiety less so. Thus, depression and anxiety are statistical confounders here, meaning that they contribute variance to the T1w signal in prefrontal WM but this does not correlate with the co-located variance from CFS severity. MRI regressions with depression itself only detected associations with WM volume, also located in prefrontal WM.

We propose that impaired reciprocal brain-body and brain-brain communication through the midbrain provokes peripheral and central responses which contribute to CFS symptoms. Although anxiety, depression and CFS may share biological features, the present evidence indicates that CFS is a distinct disorder.

© 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

 

Source: Barnden LR, Crouch B, Kwiatek R, Burnet R, Del Fante P. Evidence in chronic fatigue syndrome for severity-dependent upregulation of prefrontal myelination that is independent of anxiety and depression. NMR Biomed. 2015 Mar;28(3):404-13. doi: 10.1002/nbm.3261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369127/ (Full article)