Anti-neural antibody response in patients with post-treatment Lyme disease symptoms versus those with myalgic encephalomyelitis/chronic fatigue syndrome

Post-treatment Lyme disease symptoms (PTLDS) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) have several clinical features in common, including fatigue, musculoskeletal pain, and cognitive difficulties (Gaudino et al., 1997). Immunologic mechanisms have been suspected to play a role in both PTLDS and ME/CFS. However, biomarkers for the two conditions are currently lacking, creating a barrier to better understand them. In a previous study published in BBI, we developed a semi-quantitative immunoblot assay to compare antibody reactivity to neural antigens in a group of PTLDS patients and controls (Chandra et al., 2010).

You can read the rest of this study here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638178/

 

Source: Ajamian M, Cooperstock M, Wormser GP, Vernon SD, Alaedini A. Anti-neural antibody response in patients with post-treatment Lyme disease symptoms versus those with myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun. 2015 Aug;48:354-5. doi: 10.1016/j.bbi.2015.04.006. Epub 2015 Apr 10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638178/ (Full article)

 

Cytokines in the cerebrospinal fluids of patients with chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

OBJECTIVES: Previous research has provided evidence for dysregulation in peripheral cytokines in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). To date only one study has examined cytokines in cerebrospinal fluid (CSF) samples of CFS/ME patients. The purpose of this pilot study was to examine the role of cytokines in CSF of CFS/ME patients.

METHODS: CSF was collected from 18 CFS/ME patients and 5 healthy controls. The CSF samples were examined for the expression of 27 cytokines (interleukin- (IL-) 1β, IL-1ra, IL-2, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17, basic FGF, eotaxin, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF) using the Bio-Plex Human Cytokine 27-plex Assay.

RESULTS: Of the 27 cytokines examined, only IL-10 was significantly reduced in the CFS/ME patients in comparison to the controls.

CONCLUSIONS: This preliminary investigation suggests that perturbations in inflammatory cytokines in the CSF of CFS/ME patients may contribute to the neurological discrepancies observed in CFS/ME.

 

Source: Peterson D, Brenu EW, Gottschalk G, Ramos S, Nguyen T, Staines D, Marshall-Gradisnik S. Cytokines in the cerebrospinal fluids of patients with chronic fatigue syndrome/myalgic encephalomyelitis. Mediators Inflamm. 2015;2015:929720. doi: 10.1155/2015/929720. Epub 2015 Mar 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365360/ (Full article)

 

Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome is an unexplained debilitating disorder that is frequently associated with cognitive and motor dysfunction. We analyzed cerebrospinal fluid from 32 cases, 40 subjects with multiple sclerosis and 19 normal subjects frequency-matched for age and sex using a 51-plex cytokine assay.

Group-specific differences were found for the majority of analytes with an increase in cases of CCL11 (eotaxin), a chemokine involved in eosinophil recruitment. Network analysis revealed an inverse relationship between interleukin 1 receptor antagonist and colony-stimulating factor 1, colony-stimulating factor 2 and interleukin 17F, without effects on interleukin 1α or interleukin 1β, suggesting a disturbance in interleukin 1 signaling.

Our results indicate a markedly disturbed immune signature in the cerebrospinal fluid of cases that is consistent with immune activation in the central nervous system, and a shift toward an allergic or T helper type-2 pattern associated with autoimmunity.

 

Source: Hornig M, Gottschalk G, Peterson DL, Knox KK, Schultz AF, Eddy ML, Che X, Lipkin WI. Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Psychiatry. 2016 Feb;21(2):261-9. doi: 10.1038/mp.2015.29. Epub 2015 Mar 31. https://www.ncbi.nlm.nih.gov/pubmed/25824300

 

Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome

Abstract:

OBJECTIVES: There is evidence that inflammatory, oxidative and nitrosative stress (IO&NS) pathways participate in the pathophysiology of a subgroup of patients with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Increased IgM-related autoimmune responses to oxidative specific epitopes (OSEs), including malondialdehyde (MDA), oleic acid and phosphatidyl inositol (Pi), and nitroso-(NO)-adducts, including NO-tryptophan (NOW), NO-arginine and NO-cysteinyl, are frequently observed in ME/CFS. Autoimmune responses in ME/CFS may be driven by increased bacterial translocation as measured by IgM and IgA responses to LPS of gram negative bacteria.

METHODS: The aim of this study is to examine whether IgM responses to OSEs and NO-adducts are related to a better outcome as measured by the Fibromyalgia and Fatigue Rating Scale (FF). 76 ME/CFS patients with initially abnormal autoimmune responses were treated with care-as-usual, including nutraceuticals with anti-IO&NS effects (NAIOS), such as L-carnitine, coenzyme Q10, taurine + lipoic acid, with or without curcumine + quercitine or N-acetyl-cysteine, zinc + glutamine.

RESULTS: We found that use of these NAIOS was associated with highly significant reductions in initially increased IgM-mediated autoimmune responses to OSEs and NO-adducts. A greater reduction in autoimmune responses to OSEs during intake of these NAIOS was associated with a lower FF score. Reductions in IgM responses to oleic acid, MDA and Pi, but not in any of the NO-adducts, were associated with reductions in severity of illness. These associations remained significant after adjusting for possible effects of increased bacterial translocation (leaky gut).

CONCLUSIONS: Our results show that autoimmune responses to OSEs are involved in the pathophysiology of ME/CFS and that these pathways are a new drug target in a subgroup of ME/CFS patients. Although hypernitrosylation and nitrosative stress play a role in ME/CFS, reductions in these pathways are not associated with lowered severity of illness. Randomized controlled trials with NAIOS should be carried out in the subgroup of ME/CFS patients with initially increased autoimmune responses to OSEs.

 

Source: Maes M, Leunis JC. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett. 2014;35(7):577-85. https://www.ncbi.nlm.nih.gov/pubmed/25617880

 

Plasma cytokine expression in adolescent chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a prevalent and disabling condition among adolescents. The pathophysiology is poorly understood, but low-grade systemic inflammation has been suggested as an important component. This study compared circulating levels of individual cytokines and parameters of cytokine networks in a large set of adolescent CFS patients and healthy controls, and explored associations between cytokines and symptoms in the CFS group.

CFS patients (12-18years old) were recruited nation-wide to a single referral center as part of the NorCAPITAL project (ClinicalTrials ID: NCT01040429). A broad case definition of CFS was applied, requiring three months of unexplained, disabling chronic/relapsing fatigue of new onset, whereas no accompanying symptoms were necessary. Thus, the case definition was broader than the Fukuda-criteria of CFS. Healthy controls having comparable distribution of gender and age were recruited from local schools. Twenty-seven plasma cytokines, including interleukins, chemokines and growth factors were assayed using multiplex technology. The results were subjected to network analyses using the ARACNE algorithm. Symptoms were charted by a questionnaire, and patients were subgrouped according to the Fukuda-criteria. A total of 120 CFS patients and 68 healthy controls were included.

CFS patients had higher scores for fatigue (p<0.001) and inflammatory symptoms (p<0.001) than healthy controls. All cytokine levels and cytokine network parameters were similar, and none of the differences were statistically different across the two groups, also when adjusting for adherence to the Fukuda criteria of CFS. Within the CFS group, there were no associations between aggregate cytokine network parameters and symptom scores. Adolescent CFS patients are burdened by symptoms that might suggest low-grade systemic inflammation, but plasma levels of individual cytokines as well as cytokine network measures were not different from healthy controls, and there were no associations between symptoms and cytokine expression in the CFS group. Low-grade systemic inflammation does not appear to be a central part of adolescent CFS pathophysiology.

Copyright © 2014 Elsevier Inc. All rights reserved.

 

Source: Wyller VB, Sørensen Ø, Sulheim D, Fagermoen E, Ueland T, Mollnes TE. Plasma cytokine expression in adolescent chronic fatigue syndrome. Brain Behav Immun. 2015 May;46:80-6. doi: 10.1016/j.bbi.2014.12.025. Epub 2014 Dec 31. https://www.ncbi.nlm.nih.gov/pubmed/25555530

 

Cytokine expression provides clues to the pathophysiology of Gulf War illness and myalgic encephalomyelitis

Abstract:

Gulf War illness (GWI) is a chronic disease of unknown etiology characterized by persistent symptoms such as cognitive impairment, unexplained fatigue, pervasive pain, headaches, and gastrointestinal abnormalities. Current reports suggest that as many as 200,000 veterans who served in the 1990-1991 Persian Gulf War were afflicted. Several potential triggers of GWI have been proposed including chemical exposure, toxins, vaccines, and unknown infectious agents. However, a definitive cause of GWI has not been identified and a specific biological marker that can consistently delineate the disease has not been defined.

Myalgic encephalomyelitis (ME) is a disease with similar and overlapping symptomology, and subjects diagnosed with GWI typically fit the diagnostic criteria for ME. For these reasons, GWI is often considered a subgroup of ME.

To explore this possibility and identify immune parameters that may help to understand GWI pathophysiology, we measured 77 serum cytokines in subjects with GWI and compared these data to that of subjects with ME as well as healthy controls.

Our analysis identified a group of cytokines that identified ME and GWI cases with sensitivities of 92.5% and 64.9%, respectively. The five most significant cytokines in decreasing order of importance were IL-7, IL-4, TNF-α, IL-13, and IL-17F. When delineating GWI and ME cases from healthy controls, the observed specificity was only 33.3%, suggesting that with respect to cytokine expression, GWI cases resemble control subjects to a greater extent than ME cases across a number of parameters. These results imply that serum cytokines are representative of ME pathology to a greater extent than GWI and further suggest that the two diseases have distinct immune profiles despite their overlapping symptomology.

Copyright © 2014 Elsevier Ltd. All rights reserved.

 

Source: Khaiboullina SF, DeMeirleir KL, Rawat S, Berk GS, Gaynor-Berk RS, Mijatovic T, Blatt N, Rizvanov AA, Young SG, Lombardi VC. Cytokine expression provides clues to the pathophysiology of Gulf War illness and myalgic encephalomyelitis. Cytokine. 2015 Mar;72(1):1-8. doi: 10.1016/j.cyto.2014.11.019. Epub 2014 Dec 13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410698/ (Full article)

 

Altered immune response to exercise in patients with chronic fatigue syndrome/myalgic encephalomyelitis: a systematic literature review

Abstract:

An increasing number of studies have examined how the immune system of patients with Chronic Fatigue Syndrome (CFS), or myalgic encephalomyelitis, responds to exercise. The objective of the present study was to systematically review the scientific literature addressing exercise-induced immunological changes in CFS patients compared to healthy control subjects. A systematic literature search was conducted in the PubMed and Web of science databases using different keyword combinations. We included 23 case control studies that examined whether CFS patients, compared to healthy sedentary controls, have a different immune response to exercise. The included articles were evaluated on their methodological quality.

Compared to the normal response of the immune system to exercise as seen in healthy subjects, patients with CFS have a more pronounced response in the complement system (i.e. C4a split product levels), oxidative stress system (i.e. enhanced oxidative stress combined with a delayed and reduced anti-oxidant response), and an alteration in the immune cells’ gene expression profile (increases in post-exercise interleukin-10 and toll-like receptor 4 gene expression), but not in circulating pro- or anti-inflammatory cytokines. Many of these immune changes relate to post-exertional malaise in CFS, a major characteristic of the illness. The literature review provides level B evidence for an altered immune response to exercise in patients with CFS.

 

Source: Nijs J, Nees A, Paul L, De Kooning M, Ickmans K, Meeus M, Van Oosterwijck J. Altered immune response to exercise in patients with chronic fatigue syndrome/myalgic encephalomyelitis: a systematic literature review. Exerc Immunol Rev. 2014;20:94-116. http://www.medizin.uni-tuebingen.de/transfusionsmedizin/institut/eir/content/2014/94/article.pdf (Full article)

 

Impacts on chronic fatigue syndrome of qi deficiency syndrome and T cell subgroups in patients treated with acupuncture at selective time

Abstract:

OBJECTIVE: To verify the clinical efficacy on chronic fatigue syndrome of qi deficiency syndrome treated with acupuncture at selective time and explore the effect mechanism.

METHODS: Eighty patients were randomized into a selective-time-acupuncture group and an acupuncture group, 40 cases in each one. Qihai (CV 6), Guanyuan (CV 4), Hegu (LI 4), Taichong (LR 3), Sanyinjiao (SP 6) and Zusanli (ST 36) were selected in the two groups. In the selective-time-acupuncture group, acupuncture was used at 9:00am to 11:00am. In the acupuncture group, acupuncture was used at any time except in the range from 9:00am to 11:00am. No any manipulation was applied after the arrival of needling sensation. The treatment was given once every day, 10 day treatment made one session and two sessions of treatment were required. The fatigue scale was adopted to evaluate the efficacy before and after treatment in the patients of the two groups. The ratios among CD3+, CD4+ and CD8+ T cells in the peripheral blood were detected before ad b a after treatment.

RESULTS: In the acupuncture group, the total score of fatigue and the score of physical fatigue were reduced after treatment as compared with those before treatment (all P<0.05). In the selective-time -acupuncture group, the total score of fatigue, the s core of physical fatigue and the score of mental fatigue after treatment were reduced obviously as compared with those hefore treatment (all P<0. 01). The improvements in the scores of the selective-time-acupuncture group were superior to the acupuncture group (all P<0. 05). The ratio of CD3+ and CD8+ T cells was increased obviously after treatment in the two groups (all P<0. 05) and the ratio of CD4+ and CD8+ T cells was reduced obviously in the selective-time-acupuncture group (P<0. 05), which was better than that in the acupuncture group (all P<0.05). The total effective rate was 95.0% (38/40) in the selective-time-acupuncture group, which was better than 80.0% (32/40) in the acupuncture group (P<0.05).

CONCLUSION: The acupuncture therapy at selective time is effective in the treatment of chronic fatigue syndrome of qi deficiency syndrome, which is especially better at relieving mental fatigue. The effect of this therapy is achieved probably by improving the immune function via the regulation of the ratios among CD3+, CD4+ and CD8+ T cells.

 

Source: Ling JY, Shen L, Liu Q, Wang LY. Impacts on chronic fatigue syndrome of qi deficiency syndrome and T cell subgroups in patients treated with acupuncture at selective time. Zhongguo Zhen Jiu. 2013 Dec;33(12):1061-4. [Article in Chinese] https://www.ncbi.nlm.nih.gov/pubmed/24617226

 

Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients.

Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs.

Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.

 

Source: Brenu EW, Huth TK, Hardcastle SL, Fuller K, Kaur M, Johnston S, Ramos SB, Staines DR, Marshall-Gradisnik SM. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int Immunol. 2014 Apr;26(4):233-42. doi: 10.1093/intimm/dxt068. Epub 2013 Dec 16. http://intimm.oxfordjournals.org/content/26/4/233.long (Full article)