Genetic evaluation of AMPD1, CPT2, and PGYM metabolic enzymes in patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a disease that can seriously impair one’s quality of life; patients complain of excessive fatigue and myalgia following physical exertion. This disease may be associated with abnormalities in genes affecting exercise tolerance and physical performance. Adenosine monophosphate deaminase (AMPD1), carnitine palmitoyltransferase II (CPT2), and the muscle isoform of glycogen phosphorylase (PYGM) genes provide instructions for producing enzymes that play major roles in energy production during work.

The aim of this study was to look for evidence of genotype-associated excessive muscle fatigue. Three metabolic genes (AMPD1, CPT2, and PYGM) were therefore fully sequenced in 17 Italian patients with CFS. We examined polymorphisms known to alter the function of these metabolic genes, and compared their genotypic distributions in CFS patients and 50 healthy controls using chi-square tests and odds ratios. One-way analysis of variance with F-ratio was carried out to determine the associations between genotypes and disease severity using CF scores.

No major genetic variations between patients and controls were found in the three genes studied, and we did not find any association between these genes and CFS. In conclusion, variations in AMPD1, CPT2, and PGYM genes are not associated with the onset, susceptibility, or severity of CFS.

 

Source: Maltese PE, Venturini L, Poplavskaya E, Bertelli M, Cecchin S, Granato M, Nikulina SY, Salmina A, Aksyutina N, Capelli E, Ricevuti G, Lorusso L. Genetic evaluation of AMPD1, CPT2, and PGYM metabolic enzymes in patients with chronic fatigue syndrome. Genet Mol Res. 2016 Jul 29;15(3). doi: 10.4238/gmr.15038717. https://www.ncbi.nlm.nih.gov/pubmed/27525900

 

Genetic variation in catechol-O-methyltransferase modifies effects of clonidine treatment in chronic fatigue syndrome

Abstract:

Clonidine, an α2-adrenergic receptor agonist, decreases circulating norepinephrine and epinephrine, attenuating sympathetic activity. Although catechol-O-methyltransferase (COMT) metabolizes catecholamines, main effectors of sympathetic function, COMT genetic variation effects on clonidine treatment are unknown. Chronic fatigue syndrome (CFS) is hypothesized to result in part from dysregulated sympathetic function.

A candidate gene analysis of COMT rs4680 effects on clinical outcomes in the Norwegian Study of Chronic Fatigue Syndrome in Adolescents: Pathophysiology and Intervention Trial (NorCAPITAL), a randomized double-blinded clonidine versus placebo trial, was conducted (N=104). Patients homozygous for rs4680 high-activity allele randomized to clonidine took 2500 fewer steps compared with placebo (Pinteraction=0.04).

There were no differences between clonidine and placebo among patients with COMT low-activity alleles. Similar gene-drug interactions were observed for sleep (Pinteraction=0.003) and quality of life (Pinteraction=0.018). Detrimental effects of clonidine in the subset of CFS patients homozygous for COMT high-activity allele warrant investigation of potential clonidine-COMT interaction effects in other conditions

 

Source: Hall KT, Kossowsky J, Oberlander TF, Kaptchuk TJ, Saul JP, Wyller VB, Fagermoen E, Sulheim D, Gjerstad J, Winger A, Mukamal KJ. Genetic variation in catechol-O-methyltransferase modifies effects of clonidine treatment in chronic fatigue syndrome. Pharmacogenomics J. 2016 Oct;16(5):454-60. doi: 10.1038/tpj.2016.53. Epub 2016 Jul 26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028250/ (Full article)

 

Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

Abstract:

Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated.

The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs.

A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results.

 

Source: Huth TK, Brenu EW, Staines DR, Marshall-Gradisnik SM. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Gene Regul Syst Bio. 2016 Jun 19;10:43-9. doi: 10.4137/GRSB.S39861. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913894/ (Full article)

 

Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms?

Letter to the Editor:

With interest we read the article by Billing-Ross et al. [1] about 193 patients with chronic fatigue syndrome (CFS) diagnosed according to the Fukuda or Canadian Consensus criteria and undergoing sequencing of the mtDNA, the DePaul Symptom questionnaire and the Medical Outcome Survey Short Form-36. The study showed that CFS is associated with mtDNA haplogroups J, U and H, that 8 mtDNA single nucleotide polymorphisms (SNPs) were associated with 16 symptom categories, and that three haplogroups were associated with six symptom categories [1]. We have the following comments and concerns.

The main limitation of this study is that only the mtDNA was investigated for sequence variants. Since it is well-known that mitochondrial disorders (MIDs) may be also caused by mutations in nDNA-located genes, particularly in children [2], disease-causing mutations or SNPs facilitating the development of CFS may have been missed. Furthermore, MIDs may not only be due to respiratory chain dysfunction but also due to disruption of other mitochondrial pathways, such as the beta-oxidation, the hem synthesis, the calcium handling, the coenzyme-Q metabolism, or the urea cycle. There is also consensus that investigations of mtDNA mutations or SNPs in mtDNA from lymphocytes may not be constructive since some mutations may not be present or heteroplasmy rates may be lower than in more severely affected tissues [3].

You can read the rest of this letter herehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912808/

 

Source: Finsterer J, Zarrouk-Mahjoub S. Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms? J Transl Med. 2016 Jun 18;14(1):182. doi: 10.1186/s12967-016-0939-0. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912808/ (Full article)

 

Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

AIM: The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients.

SUBJECTS AND METHODS: A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software.

RESULTS: ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05).

CONCLUSION: We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca(2+) in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.

 

Source: Marshall-Gradisnik S, Huth T, Chacko A, Johnston S, Smith P, Staines D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. Appl Clin Genet. 2016 Mar 31;9:39-47. doi: 10.2147/TACG.S99405. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821384/ (Full article)

 

MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME

Abstract:

BACKGROUND: Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients.

METHODS: miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets.

RESULTS: Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology.

CONCLUSION: This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.

 

Source: Petty RD, McCarthy NE, Le Dieu R, Kerr JR. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME). PLoS One. 2016 Mar 11;11(3):e0150904. doi: 10.1371/journal.pone.0150904. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788442/ (Full article)

 

Genome-wide association analysis identifies genetic variations in subjects with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis, also known as chronic fatigue syndrome or ME/CFS, is a multifactorial and debilitating disease that has an impact on over 4 million people in the United States alone. The pathogenesis of ME/CFS remains largely unknown; however, a genetic predisposition has been suggested.

In the present study, we used a DNA single-nucleotide polymorphism (SNP) chip representing over 906,600 known SNPs to analyze DNA from ME/CFS subjects and healthy controls. To the best of our knowledge, this study represents the most comprehensive genome-wide association study (GWAS) of an ME/CFS cohort conducted to date.

Here 442 SNPs were identified as candidates for association with ME/CFS (adjusted P-value<0.05). Whereas the majority of these SNPs are represented in non-coding regions of the genome, 12 SNPs were identified in the coding region of their respective gene. Among these, two candidate SNPs resulted in missense substitutions, one in a pattern recognition receptor and the other in an uncharacterized coiled-coil domain-containing protein. We also identified five SNPs that cluster in the non-coding regions of T-cell receptor loci.

Further examination of these polymorphisms may help identify contributing factors to the pathophysiology of ME/CFS, as well as categorize potential targets for medical intervention strategies.

 

Source: Schlauch KA, Khaiboullina SF, De Meirleir KL, Rawat S, Petereit J, Rizvanov AA, Blatt N, Mijatovic T, Kulick D, Palotás A, Lombardi VC. Genome-wide association analysis identifies genetic variations in subjects with myalgic encephalomyelitis/chronic fatigue syndrome. Transl Psychiatry. 2016 Feb 9;6:e730. doi: 10.1038/tp.2015.208. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872418/ (Full article)

 

Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Mitochondrial dysfunction has been hypothesized to occur in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a disease characterized by fatigue, cognitive difficulties, pain, malaise, and exercise intolerance. We investigated whether haplogroup, single nucleotide polymorphisms (SNPs), or heteroplasmy of mitochondrial DNA (mtDNA) were associated with health status and/or symptoms.

METHODS: Illumina sequencing of PCR-amplified mtDNA was performed to analyze sequence and extent of heteroplasmy of mtDNAs of 193 cases and 196 age- and gender-matched controls from DNA samples collected by the Chronic Fatigue Initiative. Association testing was carried out to examine possible correlations of mitochondrial sequences with case/control status and symptom constellation and severity as reported by subjects on Short Form-36 and DePaul Symptom Questionnaires.

RESULTS: No ME/CFS subject exhibited known disease-causing mtDNA mutations. Extent of heteroplasmy was low in all subjects. Although no association between mtDNA SNPs and ME/CFS vs. healthy status was observed, haplogroups J, U and H as well as eight SNPs in ME/CFS cases were significantly associated with individual symptoms, symptom clusters, or symptom severity.

CONCLUSIONS: Analysis of mitochondrial genomes in ME/CFS cases indicates that individuals of a certain haplogroup or carrying specific SNPs are more likely to exhibit certain neurological, inflammatory, and/or gastrointestinal symptoms. No increase in susceptibility to ME/CFS of individuals carrying particular mitochondrial genomes or SNPs was observed.

 

Source: Billing-Ross P, Germain A, Ye K, Keinan A, Gu Z, Hanson MR. Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med. 2016 Jan 20;14:19. doi: 10.1186/s12967-016-0771-6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719218/ (Full article)

 

Maintenance of Chronic Fatigue Syndrome (CFS) in Young CFS Patients Is Associated with the 5-HTTLPR and SNP rs25531 A > G Genotype

Abstract:

Earlier studies have shown that genetic variability in the SLC6A4 gene encoding the serotonin transporter (5-HTT) may be important for the re-uptake of serotonin (5-HT) in the central nervous system. In the present study we investigated how the 5-HTT genotype i.e. the short (S) versus long (L) 5-HTTLPR allele and the SNP rs25531 A > G affect the physical and psychosocial functioning in patients with chronic fatigue syndrome (CFS).

All 120 patients were recruited from The Department of Paediatrics at Oslo University Hospital, Norway, a national referral center for young CFS patients (12-18 years). Main outcomes were number of steps per day obtained by an accelerometer and disability scored by the Functional Disability Inventory (FDI).

Patients with the 5-HTT SS or SLG genotype had a significantly lower number of steps per day than patients with the 5-HTT LALG, SLA or LALA genotype. Patients with the 5-HTT SS or SLG genotype also had a significantly higher FDI score than patients with the 5-HTT LALG, SLA or LALA genotype.

Thus, CFS patients with the 5-HTT SS or SLG genotype had worse 30 weeks outcome than CFS patients with the 5-HTT LALG, SLA or LALA genotype. The present study suggests that the 5-HTT genotype may be a factor that contributes to maintenance of CFS.

 

Source: Meyer B, Nguyen CB, Moen A, Fagermoen E, Sulheim D, Nilsen H, Wyller VB, Gjerstad J. Maintenance of Chronic Fatigue Syndrome (CFS) in Young CFS Patients Is Associated with the 5-HTTLPR and SNP rs25531 A > G Genotype. PLoS One. 2015 Oct 16;10(10):e0140883. doi: 10.1371/journal.pone.0140883. ECollection 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608737/ (Full article)

 

Polymorphism in COMT is associated with IgG3 subclass level and susceptibility to infection in patients with chronic fatigue syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is considered as a neuroimmunological disease but the etiology and pathophysiology is poorly understood. Patients suffer from sustained exhaustion, cognitive impairment and an increased sensitivity to pain and sensory stimuli. A subset of patients has frequent respiratory tract infections (RRTI). Dysregulation of the sympathetic nervous system and an association with genetic variations in the catechol-O-methyltransferase (COMT) and glucocorticoid receptor genes influencing sympathetic and glucocorticoid metabolism were reported in CFS. Here, we analyzed the prevalence of SNPs of COMT and glucocorticoid receptor-associated genes in CFS patients and correlated them to immunoglobulin levels and susceptibility to RRTI.

METHODS: We analyzed blood cells of 74 CFS patients and 76 healthy controls for polymorphisms in COMT, FKBP5 and CRHR1 by allelic discrimination PCR. Serum immunoglobulins were determined by immunoturbidimetric technique, cortisol levels by ECLIA.

RESULTS: Contrary to previous reports, we found no difference between CFS patients and healthy controls in the prevalence of SNPs for COMT, FKBP5 and CRHR1. In patients with the Met/Met variant of COMT rs4680 we observed enhanced cortisol levels providing evidence for its functional relevance. Both enhanced IgE and diminished IgG3 levels and an increased susceptibility to RRTI were observed in CFS patients with the Met/Met variant. Such an association was not observed in 68 non-CFS patients with RRTI.

CONCLUSION: Our results indicate a relationship of COMT polymorphism rs4680 with immune dysregulation in CFS providing a potential link for the association between stress and infection susceptibility in CFS.

 

Source: Löbel M, Mooslechner AA, Bauer S, Günther S, Letsch A, Hanitsch LG, Grabowski P, Meisel C, Volk HD, Scheibenbogen C. Polymorphism in COMT is associated with IgG3 subclass level and susceptibility to infection in patients with chronic fatigue syndrome. J Transl Med. 2015 Aug 14;13:264. doi: 10.1186/s12967-015-0628-4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536662/ (Full article)